
A High-assurance, Virtual Guard Architecture1

1Submitted for publication. © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

Mark R. Heckman, Roger R. Schell, Edwards E. Reed

Aesec Global Services

Palo Alto, CA, USA

{mark.heckman, roger.schell, ed.reed}@aesec.com

Abstract — Although one senior security professional has

emphasized that “it is unconscionable to use overly weak

components” in a multilevel security (MLS) context, the majority

of current transfer guards do exactly that. Basic guard

technology is well-developed and has a long history, but most

guards are built on low-assurance systems vulnerable to software

subversion, and the lack of assurance limits the range of transfers.

This paper describes a virtual guard architecture that leverages

mature MLS technology previously certified and deployed across

domains from TS/SCI to Unclassified. The architecture permits a

single guard system to simultaneously and securely support many

different transfer functions between many different domain pairs.

Not only does this architecture substantially address software

subversion, support adaptable information transfer policies, and

have the potential to dramatically reduce (re)certification effort,

the virtualized guard execution environment also promises to

significantly enhance efficient and scalable use of resources.

Index Terms— Assured pipeline, Downgrading, GEMSOS,

Guard, High-assurance, Multilevel security, Sanitization,

Virtualization

I. INTRODUCTION

he Committee on National Security Systems defines a

“Cross Domain Service (CDS)” as “a form of controlled

interface that provides the ability to manually and/or

automatically access and/or transfer information between

different security domains [1].” The Unified Cross Domain

(CD) Management Office (UCDMO) has further categorized

CD mechanisms as transfer, access, and multilevel. “A

transfer device permits the movement of data from one

domain to another. An access device allows a user to sit on

one workstation and access multiple domains but not move

data between them. A multilevel device stores and processes

information of different security levels in a common

repository, but only allows a user to view appropriate

information based on his/her credentials [5].”

In this paper, we are chiefly concerned with transfer

devices. Transfer devices transfer from one domain

information that is authorized for a second domain, ensuring

that the authorized information and only the authorized

information is transferred to the second domain. Examples of

data transfer functions include the following:

• Anti-virus scans on information transferred from a low

domain to a high domain, to protect the integrity of the

high domain.

• “Dirty word” (specific content) searches on data being

transferred from a high domain to a low domain, to

prevent the leakage of sensitive data.

• Creating “sanitized” data releasable to a low domain

out of sensitive data in a high domain. For example,

summary U.S. census data may be released soon after

a census, but the raw data cannot legally be released to

the public domain for 72 years [2].

(Note that the latter two types of policies often require human

review before information can be downgraded to the low

domain, due to the inability of a computer algorithm in many

cases to reliably examine data and determine that it contains

no sensitive information [3].) We refer in this paper to transfer

devices that implement any of these types of policies as

transfer “guards”.

The UCDMO maintains a “Baseline List” of commercially-

available CDSs that are available for deployment by U.S.

Government agencies. This list, as of 27 January 2012, has 28

entries, 19 of which are of the “Transfer” type [6]. Although

offered by diverse vendors, a cursory examination of the

transfer device products in the UCDMO Baseline List

indicates that they likely share several weaknesses. In

particular, most of these transfer guards are based on low-

assurance, commodity technology that is liable to introduce a

high risk of information compromise due to software

subversion. The low-assurance systems necessitate inflexible

and highly constrained transfer policies, demand endlessly

repetitive and tedious certification and recertification of

uncertain effectiveness, and lead to a large amount of wasted

and duplicative resources.

The Aesec Virtual Guard (AVG) architecture introduced in

this paper leverages many years of science and engineering

experience with building highly secure systems [18]. These

techniques were systematically codified in the U.S. National

Security Agency’s “Trusted Computer System Evaluation

Criteria” (TCSEC, also known as the “Orange Book”) [27].

Two important system composition techniques, Partitioned

TCBs [23] and TCB Subsets [21], were later approved to help

simplify the evaluation of complex systems, The potential to

T

apply these techniques was largely carried forward in the more

recent “Common Criteria for Information Technology Security

Evaluation” (CC) [28].

Through the application of the science of knowing how to

build high-assurance components and how to compose them,

the AVG architecture avoids or improves on the serious

limitations of current guard technology.

II. LIMITATIONS OF CURRENT GUARD TECHNOLOGY

The high-assurance AVG, built on a trusted computing base

(TCB) that was evaluated at the highest level of the TCSEC,

Class A1 (meeting CC EAL7 equivalent requirements),

addresses each of the following weaknesses identified in

current guard technology.

A. Susceptibility to Software Subversion

Guard implementations are commonly software applications

hosted on an operating system and hardware platform. But the

hosts typically are not high-assurance and, hence, are

susceptible to software subversion. Addressing the threat of

software subversion requires verifiable protection as

systematically codified, for example, in the TCSEC’s Class

A1, which is distinguished by “substantially dealing with the

problems of subversion of security mechanism” [7], but the

commodity platforms typically used for guards have few of the

protection features of a true high-assurance system.

A current, well-known guard example is the Information

Support Server Environment (ISSE) [8]. Vendor literature for

one recent (added to the Baseline List 2 April 2012 [9])

commercial instantiation of the ISSE says, “Guard software

will execute on the Trusted Solaris multi-level, secure

operating system” [10]. Trusted Solaris provides, at best, a

very weak level of protection. In fact, it has been used as a

specific example of an operating system that is “inadequate to

counter any focused attack” [18].

Another transfer CDS in the UCDMO Baseline List runs on

“commodity commercial off-the-shelf servers running Red Hat

Enterprise Linux 5 with a Strict SELinux policy [11]”, and

SELinux has also been proposed as a suitable base for guards

by others [12][13], but the NSA says that “Security-enhanced

Linux is only intended to demonstrate mandatory controls in a

modern operating system like Linux and thus is very unlikely

by itself to meet any interesting definition of secure system”

[14]. A system is only as secure as its weakest link. A guard

built on a low-assurance system has a foundation of sand.

Proposed guards based on the separation kernel-based

MILS architecture are a recent development [15][16]. MILS is

intended to enable the creation of high-assurance systems by

composing untrusted, commercial, off-the-shelf (COTS)

components [17]. Separation kernel approaches, by definition,

however, do not include a Reference Monitor, so the security

policy enforcement mechanism is diffused throughout the

system and development and certification of high-assurance

systems is potentially difficult and risky.

Current guard implementations are typically missing

technology to provide high-assurance that only approved and

authenticated software is distributed to each guard installation.

Because the enforcement of a mandatory access control

(MAC) policy is the responsibility of the underlying operating

system TCB, the TCB must be responsible for trusted

distribution, system integrity, and system recovery. The TCB

needs to implement integrity-checking mechanisms on system

software, detecting any tampering and preventing a damaged

system from running.

Additional constraints on guard operations and management

arise from the lack of integrity features for application

software, configuration information, and data. In summary,

current guard technology fails to significantly mitigate the

threat of supply-chain subversion of the trusted system and

untrusted applications software.

A determined and skilled adversary can easily embed

complex subversions with little fear of detection and there is

evidence that software subversion is the external threat with

the highest potential payoff for determined adversaries,

constituting the attack “of choice” [19]. (Recent events, such

as the spread of Stuxnet and Flame malware, provide

additional empirical support for this view [29].) As David Bell

has written, since guards, intrinsically “are multilevel, it is

unconscionable to use overly weak components. Such

connections require high security, meaning A1 [18].”

B. Rigid Constraints on Transfer Security Policies

Implementations of the current guard technology have

generally evolved in response to a particular class of

environments with monolithic transfer security policies. Yet

this approach neglects distinct, underlying policies, which tend

to be lumped together in an ad hoc manner.

For example, for the U. S. Government, the underlying

executive order for protecting classified information can be

directly modeled as a MAC policy for the TCB of the

underlying platform. As codified in the Class A1 criteria, the

TCB can employ installation-specific configuration

adaptations for diverse contexts from the U.S. government to

foreign partners to commercial enterprises. On top of this

MAC policy, for a given set of security domains there may be

a policy on cross domain transfers, for example a “dirty word

search” or human review. Furthermore, on top of those two

policies, a given installation may have further “safety” policy

constraints on information that can flow between domains,

e.g., requiring virus checking on data before it is transferred.

Current guard technology does not employ a systematic,

scientifically sound policy composition architecture that uses

the proven techniques of Partitioned TCBs [23] and TCB

Subsets [21] that have been available for several decades.

Current guard technology also generally lacks the ability to

limit the range of trust for a guard (e.g., TSABI versus SABI)

in the underlying MAC TCB. The absence of this capability

constrains deployment because there little assurance that the

limited range of trust cannot be circumvented.

C. Inflexible Certification and Accreditation Support

Real-world requirements call for constant adaptation – new

hardware, new software, new transfer criteria – against

adversaries who are continually probing for vulnerabilities, but

current guard technology does not have proven invariant

protection properties and implementations are generally

accredited for only one configuration. This means that guard

implementations must be reevaluated for each variation,

because introducing variations breaks the assumptions that

formed the basis for deployment approval.

D. Resource Intensive Replication

Without a high-assurance platform, guards cannot

themselves be sufficiently trusted to share their operating

system and hardware platform with other guards. This means

that there must be a different platform for each guard and

domain. In a multi-domain environment, the lack of high-

assurance leads to the creation of guard server “farms”, using

duplicative and isolated hardware and software.

This wasteful duplication of resources is exacerbated by

platforms with limited scalability for the complementary class

of environments requiring high performance for data intensive

transfers through the guard. A basic tool for scalability is

multiprocessor support, where processing resources can be

added for any deployment without impacting the underlying

basis for security, but such scalable multiprocessing is a

challenge that few high-assurance platforms have been able to

meet.

III. GEMSOS, A HIGH-ASSURANCE TCB

The AVG is built on a high-assurance TCB - the COTS

Gemini Secure Operating System (GEMSOS) [24]. The NSA

has previously evaluated the GEMSOS security kernel and

product Ratings Maintenance Phase (RAMP) plan at Class A1

as part of the evaluation of the Gemini Trusted Network

Processor (GTNP) [25], confirming that it meets the highest

standards for security, protection against subversion, and

certifiability. Because the AVG architecture depends on

features of the underlying TCB, we briefly describe some of

the key features of GEMSOS here.

A. Access Control Policy

GEMSOS is a real-time, multi-processing operating system

that implements a mandatory access control policy based on

the hierarchical lattice of security labels described in the Bell

and LaPadula access control model [33]. Labels include both a

secrecy component and an integrity component (viz., strict

integrity based on the Biba interpretation of the Bell-LaPadula

model [32]). Each of the secrecy and integrity components

consists of a hierarchical level and a set of non-hierarchical

categories [34].

All objects (storage segments, synchronization objects, and

other types of protected resources) have permanent access

labels that the system attaches to the objects when the objects

are created. Subjects (effectively processes, for purposes of

this discussion), have two access labels – a maximum read

label and a minimum write label. When a subject attempts to

access an object, the TCB compares the subject’s access labels

to the object’s access label. A subject’s read label must

dominate an object’s access label in order for the subject to be

granted read access. An object’s access label must dominate

the subject’s write label in order for the subject to be granted

write access [25].

Subjects whose read and write labels are equal are single-

level, untrusted subjects. Subjects whose read and write labels

are not equal are multi-level and trusted within the range

defined by their read and write labels. The Final Evaluation

Report for the GTNP notes that, although the GTNP

evaluation addressed only single-level application subjects,

GEMSOS correctly “restricts multi-level subjects to operating

within the defined range of the subject [25].” The AVG

architecture depends on this multi-level subject feature of

GEMSOS to create guards.

Because the TCB is “the totality of protection mechanisms

… responsible for enforcing a computer security policy [27],”

trusted subjects that extend the security policy enforced by

GEMSOS, such as transfer guards, must be evaluated as part

of the TCB. Most typical operating system features, however,

such as a file system [22], can be implemented with single-

level subjects.

B. High-assurance features

GEMSOS is “high-assurance” due to a high level of trust

that the protection mechanisms of the system correctly enforce

the security policy during all phases of the system lifecycle.

This trust is engendered by eight factors: system architecture

(using techniques such as hardware segmentation, layering,

information hiding, and minimization), integrity testing, covert

channel analysis, trusted recovery, security testing, formal

design specification and verification, configuration

management, and trusted distribution [25].

In particular, the following Class A1 requirements satisfied

by the GEMSOS TCB specifically address the threat of

subversion [27]:

• Strict configuration management and special

safeguards must be used to protect master copies of all

material, including tools, used to generate the TCB.

(Helps avoid, for example, the famous “Thompson

Trojan compiler” problem [4].)

• Formal methods must be used to detect and analyze

covert channels. (Confines potential “Trojan

Horses”.)

• Design documents must include a clear description of

internal TCB mechanisms that are not described in the

Formal Top Level Specification (FTLS).

• The Descriptive Top Level Specification (DTLS) and

FTLS must include descriptions of hardware and

firmware components (such as segmentation), if

properties of those components are visible at the TCB

interface, and a mapping of the FTLS to the actual

source code must be performed. (Mitigates potential

“Trap Doors”.)

• Testing must demonstrate that the TCB implementation

is consistent with the FTLS. Mapping of the FTLS to

the source code can serve as the basis for precise

penetration testing.

The GEMSOS kernel runs on the Intel IA-32 architecture,

which provides segmentation hardware with four privilege

levels [20]. The kernel executes in the highest privilege level

to protect it from tampering. GEMSOS leverages the

remaining three hardware privilege levels to create eight

classical protection rings and gates between them. The

hardware segmentation mechanisms are foundational to

enforcement of access controls. Rigorous software engineering

principles (layering, in particular) and formal specification

techniques used to develop the kernel, plus the kernel’s

compact size, support Class A1-level testing and formal

analysis to show the correspondence of the implemented code

to the FTLS and security policy model [25]. The system

firmware (BIOS) is part of the TCB and is also custom-built

with attention to security-related software engineering.

GEMSOS maintains system integrity beginning with secure

configuration management and continuing with trusted

distribution of the system hardware and software. Kernel

software is distributed on encrypted and sealed volumes. The

crypto-seals protect software from alteration during shipping,

installation, and system operation. Similarly the custom

GEMSOS BIOS is protected by a crypto-seal authenticator

based on a checksum computed on the ROM contents [25].

At boot time, the system first executes diagnostic tests to

verify the integrity and correct operation of the hardware and

firmware. Secure booting continues by verifying the integrity

of the boot volume and kernel modules using cryptographic

checksums before transferring control to the kernel. The

system shuts itself down if a problem is detected at any point.

Special, off-line Trusted Recovery procedures must be

followed before a system can resume operation. The

cryptographic checksum feature can be used to protect any

system, application, or data files from corruption or tampering.

IV. AVG ARCHITECTURE

The AVG architecture is implemented through GEMSOS-

provided process isolation, GEMSOS-supported multi-level

subjects, and assured pipelines created using GEMSOS

mandatory access class labels. Network clients communicate

with the AVG through standard protocols such as Network

File System (NFS) [35]. The processes that implement the

communications protocols (equivalent to Unix “daemons”) are

single-level processes outside the TCB. The AVG architecture

is depicted in figure 1.

A. Assured Pipelines

An assured pipeline limits communication within a sequence

of processes so that each process in the pipeline can only

receive information from the previous process and send

information to the next process [30]. Processes outside the

pipeline cannot interfere with data in the pipeline. Assured

pipelines have been a feature in other guard designs as well as

the AVG, although on low-assurance operating systems

[12][13].

Assured pipelines in the AVG are implemented using

integrity categories [31], which are part of the integrity

component of the mandatory security labels assigned to every

subject and object managed by the TCB [24]. Each guard has a

unique integrity category, called the guard identifier. The

guard identifier protects the guard from outside processes

because the lattice-based MAC policy enforced by GEMSOS

requires that the write label of subjects contain an integrity

category in order to be able to modify objects that have that

same integrity category [34]. Only the processes in a guard,

however, have the guard identifier integrity category assigned

to that guard. Additional integrity categories are used to keep

the pipelines of the guard ordered and separate.

For example, in figure 1, the Input Queue Manager is

trusted within a very specific integrity range so that it can read

from the Input Message Queue, which has a secrecy level of

“High” and an integrity category “ic1”, and write to the High

Message Buffer, which has a secrecy level of “High” and two

integrity categories: “ic1” and “ic2”. This is an example of an

assured pipeline. Integrity category “ic1” is the guard

identifier, while “ic2” is used to implement the assured

pipeline, because only the Input Queue Manager has access

labels that permit writing to the High Message Buffer.

(Technically, the Trusted Guard Downgrade Function also has

sufficient privilege to write to the High Message Buffer,

although there is no functional reason for it to do so and, if it

did, there are no security ramifications.) There is a second

assured pipeline on the output side of the guard.

The use of guard identifier integrity categories and assured

pipelines means that there can be multiple guards with

different ranges on the same host system. Even trusted

processes that are part of different guards cannot interfere with

one another.

B. Trusted Subjects

The AVG architecture uses the multi-level, trusted subject

feature of GEMSOS in two ways:

1. The process that performs the downgrade is trusted

with respect to secrecy by the high source domain to

maintain secrecy in the transfer to the low destination.

For example, a sanitizer is “trusted” to remove

sensitive information before putting data into the low

destination domain. The range of trust of the

downgrade process is explicitly limited by the

GEMSOS-enforced labels assigned when the system is

configured.

2. Assured pipeline processes are trusted with respect to

integrity to create higher integrity results. In strict Biba

integrity, low-integrity data cannot flow to a higher-

integrity domain. Assured pipeline processes, however,

read from a lower-integrity domain and write to a

higher-integrity domain (viz., a domain with an

additional integrity category), which protects the

pipeline against modification.

C. AVG Design

The AVG implements a guard in three phases: input,

release, and output.

1) Guard Input

In figure 1, a network client on the High network requests

sanitized transfer of a message through the guard. In our initial

prototype, this is implemented by copying a file containing the

message from its local file system to the High Message Queue

– a directory on the AVG system mounted by the client using

the Network File System (NFS) protocol [35].

The High Message Queue has a secrecy level of “High”, but

also an integrity category “ic1”. The “ic1” integrity category is

the guard identifier that is unique to this guard, and every

subject and object in the guard has the same guard identifier.

The actual transfer of the file from the client is

accomplished by the single-level Input Message Handler

process (which effectively serves as the NFS daemon for the

High network). The Input Message Handler has the same

access class (“High” secrecy and integrity category “ic1”) as

the High Message Queue so it can write to the Queue.

The Input Message Handler informs the Input Queue

Manager that a message is in the Input Message Queue by

incrementing an eventcount – a type of secure synchronization

object implemented in GEMSOS [36]. The operation to

increment an eventcount is called “advance”. The eventcount

has the same access class as the Input Message Queue, so it

can be read by the Input Queue Manager. Upon initialization,

the Input Queue Manager reads the current eventcount value

associated with the Input Message Queue and then blocks

while it waits for the eventcount to be incremented. When the

Input Message Handler increments the eventcount, the Input

Queue Manager wakes up so it can process a message in the

queue.

The Input Queue Manager process transfers each message

from the High Message Queue to a High Message Buffer that

it shares with the Trusted Guard Downgrade Function process.

The Input Queue Manager is an assured pipeline trusted within

a very specific integrity range so that it can read from the High

Message Queue, which has a secrecy level of “High” and

integrity category: “ic1”, and write to the High Message

Buffer, which has a secrecy level of “High” and integrity

categories: “ic1” and “ic2”.

2) Guard Release

The Trusted Guard Downgrade Function process is trusted

within a secrecy range “High” to “Low”. The installation and

configuration of the guard creates this limited downgrade

range, and the underlying TCB enforces it with high assurance,

regardless of any attempts to exceed that range that might

occur in the downgrade function.

The Downgrade Function can read and process input

messages from the High Message Buffer and write

downgraded data to the Low Message Buffer, which has

secrecy level “Low” and the same two integrity categories

(“ic1” and “ic2”) as the High Message Buffer. The use of the

two restricted integrity categories ensures that the Downgrade

Function can only read from and write to the message buffers,

but nowhere else.

The Input Queue Manager informs the Trusted Guard

Downgrade Function that a message is in the High Message

Buffer by incrementing an eventcount associated with the

buffer. The eventcount has the same access class as the High

Message Buffer, so it can be read by the Trusted Guard

Downgrade Function. When the Trusted Guard Downgrade

Function has processed the message in the High Message

Buffer, so that the buffer is ready to accept another message, it

signals the Input Queue Manager using another eventcount.

The Trusted Guard Downgrade Function performs

sanitization processing on the message and writes the results to

Fig. 1. Aesec Virtual Guard Architecture

the Low Message Buffer. It then signals the Output Queue

Manager through an eventcount. The Low Message Buffer has

a secrecy level of “Low” and, from this point on, all

processing in the guard is done at the “Low” secrecy level.

3) Guard Output

The Output Queue Manager is an assured pipeline that can

read from the Low Message Buffer, which has a secrecy level

of “Low” and integrity categories: “ic1” and “ic2”, and write

to the Low Message Queue, which has a secrecy level of

“Low” and integrity categories: “ic1”, “ic2”, and “ic3”.

The Output Queue Manager copies messages from the Low

Message Buffer and puts them in files in the Low Message

Queue. Using eventcounts, the Output Queue Manager tells the

Trusted Guard Downgrade Function that the Low Message

Buffer has been emptied and tells the Output Message Handler

that a message has been added to the Low Message Queue.

The secrecy level of “Low” and the set of integrity

categories “ic1” and “ic2” ensure that only the Output Queue

Manager (and the Trusted Guard Downgrade Function) can

read from the Low Message Buffer. The integrity categories of

“ic1”, “ic2”, and “ic3” ensure that only the Output Queue

Manager (and the Output Message Handler) can write to the

Low Message Queue.

Clients on the Low network can retrieve “Low” files

containing sanitized data from the AVG system via an NFS-

mounted directory. The NFS file transfer is accomplished by

the single-level Output Message Handler.

D. Pre- and Post-processing Ability

An important advantage of the assured pipeline architecture

is the ability to add pre-processing and post-processing steps.

By using additional integrity categories, additional pipelines

can be added to the guard. An example of a pre-processing

step is verification of a digital signature on the data. An

example post-processing step could be an anti-virus scan.

V. AVG PRINCIPLES OF OPERATION

The AVG architecture described in section IV is designed to

address all four of the limitations of current guard technology

described in section II: susceptibility to software subversion,

constraints on transfer security policies, inflexible certification

and accreditation, and replication of resources.

A. Substantially address software subversion

As described in section III, the GEMSOS TCB on which the

AVG is built meets TCSEC Class A1 standards for high-

assurance, including formal analysis, configuration

management and trusted distribution. Cryptographic

checksums and other mechanisms are used to protect system,

application, and data files from corruption and tampering.

Section III identifies these and other high-assurance features

that help assure the integrity of the system throughout its life-

cycle, from design and development to distribution and

operation, and significantly mitigate the threat of supply-chain

subversion of the trusted system and application software.

B. Modular but confined transfer security policies

Unlike current guard technology, which lacks a high-

assurance basis to ensure limits on the range of trust for a

guard, MAC enforcement by the GEMSOS TCB provides

verifiable assurance in the AVG that the range of trust of the

guard cannot be circumvented. Specifically, as described in

Section III, each subject has two access labels – a maximum

read label and a minimum write label. Subjects whose read

and write labels are not equal are multi-level and trusted to

transfer information within the range defined by the read and

write labels. The transfer of information from a source domain

to a different destination domain can only be accomplished by

such a trusted subject. GEMSOS ensures that a multi-level

subject cannot exceed its defined range.

Moreover, the policy implemented by the guard is modular,

and additional pre- and post-processing modules can easily be

added simply by using additional integrity categories to

implement assured pipelines. The pipelines ensure that the

modules are organized as a hierarchy, so that no step can be

skipped. Current guard technology is not designed to compose

multiple, modular policies of this type in a systematic,

scientifically sound manner, but the AVG, built on a high-

assurance TCB, is.

Consider, for example, an AVG system with a single

module. The guard policy is a hierarchical extension to the

mandatory security policy enforced by GEMSOS because the

trusted guard can only enforce its policy on objects where the

TCB has previously enforced its own policy. The policy

enforced by the entire system is, therefore, a composition of

the TCB MAC policy, which permits trusted subjects, and the

downgrade policy implemented by the trusted subject guard.

The TCB and guard each enforce a subset of the overall

system security policy. A technique called “TCB Subsets” can

be used to validate the correct composition of hierarchical

components like the AVG and the TCB on which it runs [21].

The conditions under which a compositional evaluation using

TCB subsets can be performed include clear identification of,

and policy allocation between, the subsets and a definite

hierarchical relationship between the subsets. An additional

requirement is to demonstrate that the guard subset is

protected from tampering by other subjects running on the

TCB [21]. All of these conditions are met in the AVG

architecture. This compositional evaluation process can be

extended for an arbitrary number of additional modules

connected via assured pipelines, leveraging composability to

simplify certification and accreditation.

A TCB “partition” is a TCB subset that does not depend

hierarchically on another TCB subset. For example, a set of

unrelated guards hosted on the same AVG system implement

an overall system policy, but those policies are not

hierarchical. Instead, each guard enforces a partition of the

overall policy. Similarly, a network of guards that run on

different AVG systems but that are pipelined in some fashion

are also not hierarchically related because they do not share a

defined subset of subjects, objects, and hardware. Although

their policies cannot be composed using the technique of TCB

Subsets, “Partitioned TCB” composition can be used [23].

C. Incremental evaluation

It is an intrinsic property of high-to-low transfer that the

MLS-enforcing TCB alone cannot provide assurance of the

transfer security. A guard process must be a trusted subject

that is, by definition, “trusted” with the capability to perform

downgrades not otherwise permitted by the security policy. To

assure overall system security, a guard trusted subject must be

certified (and accredited) in the context of the overall system.

The TCB subsets evaluation approach, however, can

dramatically constrain the scope of the system certification and

accreditation effort and enable controlled and rapid upgrades

in response to dynamic operational environments. Because the

system consists of well-defined subsets, each subset can be

examined separately, permitting incremental evaluation of the

system.

Incremental evaluation means that guard trusted subjects

can be added and modified, requiring evaluation only of the

new or modified trusted subjects and without the need to

reevaluate the entire system.

The incremental evaluation capability of GEMSOS itself

can also constrain the scope of system certification and

accreditation that may be necessary due to future

enhancements in the underlying TCB. Although, for example,

the current GEMSOS implementation has refreshed

technology (e.g., to a 32-bit TCB interface and large memory

segments), the security foundation of the formal specification

and model have remained inviolate. Thus, the inviolable,

conceptually simple, overall security architecture of the AVG

and its underlying TCB can reduce the initial as well as

recurring certification and accreditation time and effort.

D. Secure hardware sharing and extension

The GTNP Final Evaluation Report prepared by NSA

explicitly notes GEMSOS’s ability to support “a virtual

machine on top of the Virtual Machine Monitor provided by

the GTNP” [25]. The AVG leverages this feature to implement

guards.

Unlike guards built on low-assurance platforms, the high-

assurance platform on which the AVG is built provides

verifiable isolation within a single multi-domain system to

allow the AVG to support multiple “virtual” guards running

simultaneously within the same system. The non--bypassable,

assured transaction pipelines used in the AVG insure that the

trusted guards will be invoked and prevent them from

interfering with one another. The guards are not restricted to

the same transfer security policy and domains, but may support

different transfer security policies, between multiple domains,

with confidence that each guard is properly isolated and

protected.

GEMSOS, moreover, is a multi-processing operating system

and supports a scalable processing capability to provide

additional computing capacity in resource-intensive

environments. This expandability can reduce the number of

systems needed for a given workload. Combined with the

guard virtualization capability, the scalability makes the AVG

suitable for use in multi-domain environments and sharply

reduces or eliminates the need for redundant and duplicative

resources.

VI. GUARD VIRTUALIZATION

The design presented in section IV is for the one-way

transfer of data for a single transfer security policy. This is

somewhat typical of current guard implementations. Each

instance of a guard is hosted on its own (often dedicated)

platform. The AVG architecture, however, virtualizes this

guard host environment, which allows the AVG to support

multiple instances of isolated and independent guards on the

same platform. This virtualization depends only on the

GEMSOS TCB, without introducing the serious risks and

limitations of using a general-purpose, low-assurance,

commodity, virtual machine monitor.

A. Hosting Multiple Virtual Guard Services

In figure 1, two network connections are shown: one for

“High” network clients and one for “Low” network clients, and

there is only one guard service for transfer between the two

separate network interfaces for high and low clients. End-to-

end control of the data transfer, including any pre- and post-

processing for a particular guard, is implemented using the

guard identifier integrity category, two other integrity

categories for implementing the assured pipelines, and the

MAC policy enforced by the underlying GEMSOS TCB.

GEMSOS has available a large number of independent

integrity categories, so another, completely isolated and

protected guard can be created by using a different guard

identifier integrity category, along with the same two assured

pipeline categories, in the same way as shown in figure 1. The

new guard created using the different guard identifier category

creates a separate and distinct virtual guard service. Multiple

guard services created in this way can run on the same

platform at the same time, each supporting an independent

transfer security policy. The virtual guard services can

potentially support different data flows between any paired

combinations of the same or different domains.

B. Virtual Guard Service over Shared Network Interface

Additional physical network interfaces can be used to

provide network connections between new guard instances and

their high and low clients (which may be in security domains

different from other instances). Separate physical network

interfaces can help keep the domains separate. Guard

virtualization supported by the AVG, however, does not

require a separate network interface per domain. Another type

of guard can be used to encrypt, seal, and forward packets

from different domains to create virtual networks, securely

multiplexing multiple access domains on the same network.

Consider, for example, the network depicted in figure 2. A

“system high” network connects Internet or other untrusted

sources to lower-domain hosts at the same time as it carries

high-domain data. Stand-alone crypto-seal guard appliances,

called “GemSeal” guards [37], sit on the network in front of all

low-domain hosts and bridges to the Internet and other low-

domain networks.

The GemSeal guards, which are themselves built on

GEMSOS, seal packets with their source label and forward

them over the system high network. The seals protect the

integrity of the labels and data. Unlabeled or altered packets

cannot enter a guarded destination because they will not have a

crypto seal that binds a label to a matching destination label,

preventing high-domain data from being released to low-

domain hosts.

The TCSEC requires that “Sensitivity labels shall accurately

represent security levels of the specific … objects with which

they are associated. When exported by the TCB, sensitivity

labels shall accurately and unambiguously represent the

internal labels and shall be associated with the information

being exported [27].” GEMSOS uses crypto seals internal to

its TCB to protect the label and data integrity of non-volatile

storage. GemSeal applies this same crypto seal concept to

network packets to ensure that packet data is not altered and

that the source sensitivity label is authentic.

We can generalize the GemSeal architecture shown in figure

2 to support multiple domains – not just the two in the figure –

by putting GemSeal guards in front of every host of every

domain. The guards would forward labeled and encrypted

packets across the shared network to a guard at the destination.

Destination guards validate the data and label of each packet

against the destination label before releasing it. In effect,

GemSeal guards would implement VPN tunneling with a

different tunnel for every domain pair.

The next step is to put the GemSeal appliance into an AVG

system instead of having it as a separate appliance. The

GemSeal would run as a higher-integrity subject than the

transfer guard applications and would be part of the AVG

TCB. The internal GemSeal could reliably determine the

access domain of each message from the message’s sealed

label and place the message into the correct assured pipeline

for trusted downgrade using the applicable virtual guard

service.

A deployed application with significant similarities to the

GemSeal concept is the NSA Class A1 BLACKER project to

implement host-to-host secure communications across the

Defense Data Network. BLACKER supports “eight security

labels, from Unclassified to Top Secret” for messages.

BLACKER used the GEMSOS kernel for key management

and distribution, and for the access control center which “is the

‘brains’ of the system [26].” GemSeal has also been proposed

for use in securing critical infrastructure networks [38].

VII. CONCLUSION

The raison d'être for a guard is to enhance the information

security of system. The limited assurance of current guard

technology, however, can have the opposite effect, by

introducing serious vulnerabilities to subversion and by

necessary deployment restrictions as a result of a lack of trust

in the guard systems. The AVG architecture substantially

mitigates those risks by leveraging the mature and proven

GEMSOS TCB designed to meet the Class A1 requirements.

The AVG, furthermore, uses the proven policy composition

tools of TCB subsets and TCB partitions to enable secure and

systematically repeatable incremental evaluation. When

applied effectively, such composition approaches can

dramatically reduce the time and effort required for, and

Crypto seal release guards connect

Internet or NIPRNET resources across

the System High Network but protect

system high data.

Internet,

NIPRNET, etc.

Unsealed

High data

cannot exit.

Guards validate low-sealed

packet seal & labels before

release to the destination.

Guards seal packets with their

source network label and forward

them over the high network.

System

High

network

System High

Computer

Low

Computer

G
e

m
S

e
a

l

G
e

m
S

e
a

l

Low

network

Fig. 2 Crypto Seal Guard Concept

increase confidence in, certification and accreditation efforts.

The benefits of incremental evaluation would be especially

valuable in dynamically changing environments, such as those

faced in military deployments, where frequent recertification

may be necessary as the system is modified in the face of a

rapidly evolving adversary.

Beyond those considerations for insuring adequate security,

guard virtualization enables more effective use of resources.

Not only can this reduce costs, it can also reduce the space,

weight, and power footprint that may be even more important

in aircraft and space deployments.

REFERENCES

[1] Committee on National Security Systems, “National Information

Assurance (IA) Glossary”, CNSS Instruction 4009, 26 April 2010.

(CNSSI4009). Available: www.cnss.gov/Assets/pdf/cnssi_4009.pdf

[2] The "72 Year Rule", United States Census Bureau,

http://www.census.gov/history/www/genealogy/decennial_census_recor

ds/the_72_year_rule_1.html

[3] Multilevel Security in the Department Of Defense: The Basics, Defense

Information Systems Agency, Department of Defense Multilevel

Security Program, 1 March 1995. Available:

http://www.zoklet.net/totse/en/hack/hack_attack/multsec.html

[4] K. Thompson, “Reflections on trusting trust,” Communication of the

ACM, Vol. 27, No. 8, August 1984, pp. 761-763. Available:

http://cm.bell-labs.com/who/ken/trust.html

[5] M. Bailey, “The Unified Cross Domain Management Office: Bridging

Security Domains and Cultures,” in CROSSTALK: The Journal of

Defense Software Engineering, July 2008. Available:

http://www.crosstalkonline.org/storage/issue-

archives/2008/200807/200807-Bailey.pdf

[6] “UCDMO Cross Domain Baseline List: As of 27 January 2012”,

Available:

http://www.owlcti.com/pdfs/certifications/UCDMO_v.3.5.0_Baseline_I

nventory.pdf

[7] R. R. Schell and D. L. Brinkley, “Evaluation criteria for trusted

systems”, in Information Security: An Integrated Collection of Essays,

Abrams, Jajodia, and Podell, eds., IEEE Computer Society Press, Los

Alamitos, CA, pp. 137-159, 1995.

[8] “Information Support Server Environment - ISSE-Guard ,”

http://www.globalsecurity.org/intell/systems/isse-guard.htm

[9] “ITT Exelis cross-domain solution approved for deployment on U.S.

government networks,” April 2, 2012,

http://www.exelisinc.com/News/PressReleases/Pages/ITT-Exelis-cross-

domain-solution-approved-for-deployment--on-U.S.-government-

networks.aspx

[10] “ISSE (Information Support Server Environment),”

http://www.exelisinc.com/solutions/ISSE/Pages/default.aspx

[11] “Raytheon High-Speed Guard,”

http://www.raytheon.com/capabilities/rtnwcm/groups/iis/documents/con

tent/rtn_iis_highspeedguard_ds.pdf

[12] B. Fletcher, C. Roberts, and K. Risser, “The design and implementation

of a guard installation and administration framework”, 2007 SELinux

Symposium and Developer Summit, 26 January 2007. Available:

http://selinuxsymposium.org/2007/papers/10-GIAF.pdf

[13] K. MacMillan, S. Shimko, C. Sellers, F. Mayer, and A. Wilson,

“Lessons learned developing cross-domain solutions on SELinux”,

Tresys Technology, LLC., March 2 2006, unpublished white paper.

Available: http://www.tresys.com/pdf/Lessons-Learned-in-CDS.pdf

[14] “SELinux Frequently Asked Questions (FAQ),”

http://www.nsa.gov/research/selinux/faqs.shtml#I13

[15] Cross-domain solutions for airborne operations, Small Business

Innovation Research (SBIR) contract FA8750-10-C-0117, 2010,

http://www.sbir.gov/sbirsearch/detail/3097

[16] A. Gehani, D. Hanz, J. Rushby, G. Denker, and R. DeLong. “On the

(f)utility of untrusted data sanitization,” in Proc. MILCOM 2011

Military Communications Conference (MILCOM 2011), IEEE.

November 2011, Baltimore, MD.

[17] J. Alves-Foss, W. S. Harrison, P. Oman, and Carol Taylor. “The MILS

architecture for high-assurance embedded systems,” in International

Journal of Embedded Systems, 2(3/4):239–247, 2006.

[18] D. E. Bell, “Looking back at the Bell-LaPadula model,” Proceedings of

the 21st Annual Computer Security Applications Conference, December

2005.

[19] E. A. Anderson, C. E. Irvine, and R. R. Schell, "Subversion as a threat

in information warfare," in Journal of Information Warfare, Volume 3,

No.2, June 2004, pp. 52-65.

[20] Intel 64 and IA-32 Architectures Software Developer’s Manual, May

2011. Available: http://www.intel.com/content/dam/doc/manual/64-ia-

32-architectures-software-developer-vol-1-2a-2b-3a-3b-manual.pdf

[21] W. R. Shockley and R.R. Schell, “TCB subsets for incremental

evaluation”, in Proc. AIAA/ASIS/IEEE 3rd Aerospace Computer

Security Conference, 1987, pp 131-139.

[22] C. E. Irvine, "A multilevel file system for high assurance," in

Proceedings 1995 IEEE Symposium on Security and Privacy, Oakland,

CA, pp. 78-87, May 1995.

[23] “Trusted Network Interpretation of the Trusted Computer System

Evaluation Criteria”, DoD 5200.28–STD, 31 July 1987, NCSC–TG–

005.

[24] R. R. Schell, T. F. Tao, and M. R. Heckman, “Designing the GEMSOS

security kernel for security and performance,” in Proceedings of the 8th

DoD/NBS Computer Security Conference, 1985, pp. 108-119.

[25] “Final Evaluation Report, Gemini Computers, Incorporated, Gemini

Trusted Network Processor, Version 1.01”, National Computer Security

Center, 1995. Available: http://www.aesec.com/eval/NCSC-FER-94-

008.pdf

[26] C. Weissman, "BLACKER: security for the DDN examples of A1

security engineering trades," in Proc. 1992 IEEE Computer Society

Symposium on Research in Security and Privacy. Oakland, CA: IEEE,

1992, pp. 286-292

[27] "Department of Defense Trusted Computer System Evaluation Criteria”

(Orange Book), 5200.28-STD, United States National Computer

Security Center, December 1985.

[28] Common Criteria for Information Technology Security Evaluation,

Version 3.1, CCMB-2009-07-001, July 2009.

[29] “Cyberattacks on Iran – Stuxnet and Flame”, Updated June 1, 2012.

http://topics.nytimes.com/top/reference/timestopics/subjects/c/computer

_malware/stuxnet/index.html

[30] W. Boebert and R. Kain, “A practical alternative to hierarchical

integrity properties,” in Proceedings of the 8th DoD/NBS Computer

Security Conference, 1985, pp. 18-27.

[31] T. M. P. Lee. “Using mandatory integrity to enforce ‘commercial’

security.” In Proceedings of the 1988 IEEE Symposium on Security and

Privacy, IEEE Computer Society, Oakland, CA, USA, 18- 21 April

1988.

[32] K. J. Biba, “Integrity Considerations for Secure Computer Systems,”

MITRE Technical Report MTR-3153, April 1977.

[33] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Unified

Exposition and Multics Interpretation,” Mitre Technical Report MTR–

2997, March 1976.

[34] R. Sandhu, “Lattice-Based Access Control Models,” in IEEE

Computer, 26(11): 9-19, Nov. 1993.

[35] B. Callaghan, B. Pawlowski, and P. Staubach, “NFS Version 3 Protocol

Specification,” Sun Microsystems, Inc., June 1995.

[36] D. P. Reed and R. K. Kanodia, "Synchronization with Eventcounts and

Sequencers", Communications of the ACM, February 1979, Volume 22,

No. 2, pp. 115-123.

[37] Aesec Global Services, "GemSeal Guard: High Assurance MLS,"

Unpublished white paper, 2007.

[38] M. R. Heckman, R. R. Schell, and E. E. Reed, “Composing a high-

assurance infrastructure out of TCB components,” presented at the 5th

Annual Layered Assurance Workshop (LAW 2011), Orlando, FL, USA.

December, 2011. Available: http://fm.csl.sri.com/LAW/2011/law2011-

paper-heckman.pdf

