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Abstract
The usefulness of intrusion detection systems frequently suf-
fers from a high rate of false-negative alerts—failure to gen-
erate alerts when an attack occurs, and false-positive alerts—
alerts when no attack is taking place. False-negative alerts 
mean analysts will not detect an attack, while false-positive 
alerts distract analysts and may obscure alerts that indicate 
real attacks. Advances in big data analytical techniques raise 
the hope that these techniques could be used to vastly im-
prove intrusion detection. This article discusses the essential 
problems in intrusion detection and how big data techniques 
have been successfully applied to overcome some of the prob-
lems, but also explains some fundamental limits that could 
prevent big data from achieving all of the promises.

Big Data is a term used to describe techniques for ex-
tracting useful information from large volumes of 
data. Big data techniques such as data mining and 

machine learning have already proven their usefulness in 
complex predictive analytics, pattern recognition, and clas-
sification problems in many different fields. Advances in big 
data techniques raise the hope that they could be applied to 
solve one of the most intractable problems in cybersecurity: 

high false-negative and false-positive alert rates in intrusion 
detection systems.
Intrusion detection is the monitoring of system events to 
detect activity that violates the system security policy. An 
intrusion detection system (IDS) must analyze large quan-
tities of data, usually in real time, and attempt to pick out 
and correlate events that indicate an attack is occurring. But 
that is not an easy task in large, complex, and chaotic sys-
tems, which means that most IDSs suffer from high rates of 
false-negative alerts, false-positive alerts, or both:
•	 False negatives occur when an IDS fails to alert on a real 

attack. An IDS that has too many false negatives is simply 
not very good at detecting attacks. 

•	 False positives occur when an IDS alerts on a suspected 
attack when no attack has happened. An IDS that has too 
many false positives will waste the time of security ana-
lysts who may miss real attacks—true positives—in the 
false-positive noise.

The promise of big data for intrusion detection is obvious: 
Advanced data analytic techniques will, it is hoped, sharply 
reduce the rate of false positives and false negatives, making 
IDSs much more accurate at detecting attacks and ignoring 
benign behavior. But the use of machine learning for intru-
sion detection is not new. Automatic generation of statisti-
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cal models of normal and abnormal activity, for example, 
goes back 30 years or more (e.g., see D.E. Denning, An In-
trusion-Detection Model, 1987 [11]). What is it about today’s 
technology that promises to do so much better? The following 
sections will explain the challenges of intrusion detection, 
discuss how big data is already being used to improve results, 
and clarify some limits on what big data can do for improving 
intrusion detection. 

Intrusion detection techniques
An IDS works much like a burglar alarm for computer sys-
tems. The IDS monitors system events—network, host, or ap-
plication—and generates alerts when it detects behavior that 
violates the system security policy. The chief goals of an IDS 
are to detect as wide a variety of attacks as possible, includ-
ing both previously known and unknown attacks, in a timely 
fashion while maintaining high accuracy (i.e., minimizing 
false negatives and false positives). 
It was proven decades ago that the problem of detecting vi-
ruses is undecidable – that is, there is no possible generic 
algorithm that will perfectly detect all viruses (i.e., no false 
positives or false negatives) [7]. A similar argument can be 
made that there is no way to perfectly identify intrusions in 
general (see sidebar “Why a Perfect IDS Is Impossible”), but 
just because a detection system isn’t perfect, doesn’t mean it 
can’t be good enough to be useful. 
There are three general approaches to intrusion detection: 
1) misuse detection—defining specific bad behavior so that, 
implicitly, everything else is considered to be good, 2) speci-
fication-based detection—defining specific good behavior so 
that, implicitly, everything else is bad, and 3) anomaly de-
tection—automatically generating a specification for “nor-
mal” behavior with the expectation that normal behavior is 
more closely associated with “good” and abnormal behavior 

is more closely correlated with “bad” [3]. An IDS might use 
one or a combination of these methods.
The following sections briefly explain misuse and specifi-
cation-based detection. Because anomaly detection is the 
intrusion detection approach that may be most amenable 
to improvement using big data techniques (for reasons ex-
plained below), the description of anomaly detection is more 
in-depth.

Misuse detection
Misuse detection systems work by comparing observed data 
against a database of stored “signatures” or “rules”—data 
previously shown to correlate with attacks. When observed 
data matches a signature, the system raises an alert. A classic 
example of a misuse detection system is antivirus software. 
The virus definition database constitutes the signatures. Sig-
natures may consist of strings of bits unique to particular ma-
licious software (malware) object code, a unique command or 
set of commands executed by malware, or a suspicious pat-
tern of commands.
For example, the Code Red worm of 2001 used a buffer over-
flow attack containing the following unique data string that 
could be used as a signature [13]:

/default.ida?NNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NN%u9090%u6858%ucbcd3%7801%u9090%u6805%ucb-
d3%u7801

The Solaris Sadmind/IIS worm (also 2001) executed the fol-
lowing unique command that could be used as a signature [5]:
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tives. If a signature is too specific, it may miss some instances 
of the same attack, leading to false negatives. But typically 
signatures are very precisely defined, so misuse detection 
systems usually have a low false-positive rate. A misuse de-
tection system, however, can only detect attacks for which a 
signature has been created. If there is no matching signature, 
the system will not detect an attack. Even slight variations in 
malware can mean that old signatures will no longer match, 
and misuse detection systems are completely unable to detect 
new attacks because no signatures can yet exist, leading to 
high false-negative rates. For this reason, signature databases 
quickly become obsolete and a misuse detection system must 
frequently download new signature databases. 

Specification-based detection
A specification-based system compares observed data against 
a database of legitimate behaviors. Whenever the observed 
behavior does not match a record in the database of legiti-
mate behaviors, the system raises an alert. This approach is 
excellent at detecting previously unknown attacks because, 
by definition, attacks are not legitimate activity and will not 
match the specification, so specification-based IDSs can have 
low false-negative rates.
Given complete and detailed specifications for the complete 
range of legitimate activity in a system, specification-based 
IDSs can also have low false-positive rates. But creating such 
specifications in all but simple systems is difficult and er-
ror-prone, so specifications in complex systems are likely to 
be inaccurate, leading to very high false-positive rates. For 
this reason, specification-based IDSs are chiefly used in sys-
tems with well-defined, regular processing activity such as 
medical [19] and SCADA devices [6].
An example of behavior specifications in a medical device 
is a set of 11 rules for an IDS that monitors a medical cyber 
physical system (MCPS) [19]. The MCPS consists of vital sign 
monitor, patient controlled analgesia, and cardiac devices. 
The rules require that actual sensor readings (for pulse, blood 
pressure, etc.) match the readings shown on the monitor, that 
the patient is in a debilitated state (e.g., his heart is fibrillat-
ing) before treatment (in this case, defibrillation) is given, and 
that the automatically provided treatment is in the safe range 
(e.g., the analgesic request rate is below a safe threshold). The 
IDS alerts any time the observed state of the system violates 
any of the rules.
Specifications are created from theoretical reasoning about 
legitimate behavior, rather than by empirical observation of 
data as the system is being used. But big data techniques are 
aimed at extracting information from empirical observation 
of large data sets. For this reason, specification-based intru-
sion detection is the least likely intrusion detection method to 
benefit from big data techniques.

Anomaly detection
Anomaly detection is the identification of activity in ob-
served data that does not conform to expected behavior. Like 

GET/ scripts/../../winnt/system32/cmd.exe /c+ copy+\wint\
system32\CMD.exe+root.exe

The creation of new signatures has generally been a manual 
(i.e., human) process that calls for a high level of expertise. 
A signature developer examines captured malware and tries 
to develop a signature that is neither too general nor too spe-
cific. If a signature is too general, it will lead to false posi-

SIDEBAR

Why a perfect IDS is impossible
Fred Cohen in 1984 proved that the problem of detecting 
viruses is undecidable—that is, there is no possible generic 
algorithm to accurately detect all viruses [7]. This argument 
was later extended to all malware in general. Thus, a per-
fect IDS (no false positives or false negatives) is impossible. 
The argument is based on the most famous of all comput-
er science proofs, called the Halting Problem. The halting 
problem, created by Alan Turing in the 1930s, asks if there is 
a generic algorithm that takes as input a program and input 
to that program and that can determine if the program will 
ever terminate (i.e., halt) on that input. While it is certainly 
possible for some programs and inputs to detect if the pro-
gram will halt or not, Turing proved that it was impossible 
in the general case [21]. Ever since in computer science it is 
sufficient to show that a problem is undecidable if solving it 
would require a solution to the halting problem.

That is what Cohen did. He showed that the problem of de-
tecting all viruses is solvable only if there is a solution to the 
halting problem. But the halting problem is known to be 
undecidable so the problem of detecting all viruses is also 
undecidable. Cohen formulated the problem in this way: A 
perfect virus detector should emit an alarm if and only if the 
potential virus passed as input to the detector can ever in-
fect and damage the host (i.e., the virus detector is perfect 
if it has no false positives and no false negatives). Consider 
the following program:

f();

infect();

If the function f() can return, then this is a virus and the de-
tector should alert. If, however, f() is in an infinite loop and 
will never return, then no infection is possible, so the virus 
detector should not alert. But coming up with the correct 
answer would require the virus detector to know if f() will 
halt or not, so the detection problem is equivalent to the 
halting problem, which is known to be undecidable.

Note that it is easy to create a system with a 0 percent 
false-negative rate: simply alert on every event. But, of 
course, that will yield a 100 percent false-positive rate. Con-
versely, a system can have a 0 percent false-positive rate 
simply by never alerting on any events, but that obvious-
ly will yield a 100 percent false negative rate. There is no 
way, in general, to simultaneously have both a 0 percent 
false-positive and 0 percent false-negative rate. Because 
perfection is impossible, an IDS must make a tradeoff be-
tween false-positive and false-negative rates. 
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be developed over the course of many observations. For ex-
ample, consider if the ISSA wanted to use anomaly detection 
to detect buffer overflow attacks on the quick search field of 
the ISSA home page (www.issa.org). The IDS might observe 
the length of search terms over many searches, calculate the 
average input length, and store that average as a profile. An 
input value that greatly exceeds that average could represent 
a potential buffer overflow and would trigger an alert. 
Not all data is equally useful in differentiating normal from 
anomalous behavior. Choosing the attributes to train on—a 
process called feature selection—is as important or more than 
the algorithm used to create profiles. For example, while the 
length of search terms in the ISSA quick search field is cor-
related with buffer overflow attacks, the type of characters 
in the input string—numbers or letters, say—may not be. It 
would likely be impossible for the system to create meaning-
ful profiles if it trained on the type of characters.

Anomaly detection models
Denning identified three metrics and five statistical models 
for anomaly detection [11]. Most, if not all, anomaly detection 
systems used today still depend on these same basic metrics 
and statistical models. The metrics are an event counter that 
represents the number of occurrences of an event during a 
period of time (such as the number of failed logins in one 
minute), an interval timer that represents the length of time 
between two related events (such as the length of time be-
tween two successive logins to the same account), and the 
quantity of resources consumed by an action during a period 

specification-based intrusion detection, observed behavior 
is compared against a database of expected behaviors, and 
outliers cause the system to alert. Unlike specification-based 
intrusion detection, however, where the specifications are de-
fined ahead of time and remain fixed, the expected behavior 
in anomaly detection is defined through analysis of empirical 
data and can adapt as “normal” behavior changes over time.
The key assumption of anomaly detection is that attacks ex-
hibit characteristics that are different than those of normal 
behavior [11]. Anomaly detection works by analyzing a set 
of system characteristics and comparing its values against a 
recorded baseline, or profile, that represents what is normal 
for the system. Outliers are labeled “anomalous.” Anomalous 
events are assigned a score based on the degree of anoma-
lousness. When the degree of anomalousness exceeds some 
threshold parameter, the system 
raises an alert. Figure 1 abstract-
ly depicts a profile (the circle) 
around behaviors considered 
“normal.” Behaviors a1 and a2 
are anomalous, where a2, being 
farther away from “normal,” has 
a higher degree of anomalous-
ness.

Figure 1 – “Normal” profile with 
anomalous outliers

The process of calculating a profile is called training. Training 
typically uses values observed while the system is running. 
Because normal behavior can vary quite widely, a profile must 

  

FEBRUARY 2017,  the PCI Security Standards Council issued a 
new information supplement titled “Multi-Factor Authentica-
tion”1 after the brew-ha-ha that occurred last fall at the communi-
ty meeting in Las Vegas.  For once, the Council has issued a great 
reference regarding the issues of multi-factor authentication 
(MFA). I still have a couple of minor bones to pick about this docu-
ment, but more on that later.

If you understand the concepts of MFA, you can skip through the 
document to the end where the Council presents four scenarios 
on good and bad MFA.  These are well documented and explain 
the thought process behind why the scenario works or does not 
work for MFA.  The key take away of all of this is the independence 
of the MFA solution from the logon process.  The Council is get-
ting in front of the curve here and stopping people from creating 
insecure situations where they believe they are using MFA that 
minimizes or stops breaches through administrators or users with 
access to bulk card data.

Now for a few things that I do not necessarily agree with in this 
document.

1	 “Multi-Factor Authentication,” PCI Security Standards Council, February 2017 – https://
www.pcisecuritystandards.org/pdfs/Multi-Factor-Authentication-Guidance-v1.pdf.

The first involves the Council’s continued belief that hardware se-
curity modules (HSM) are actually only hardware.  On page four, 
the following statement is made.

“Hardware cryptographic modules are preferred over software 
due to their immutability, smaller attack surfaces, and more re-
liable behavior; as such, they can provide a higher degree of 
assurance that they can be relied upon to perform their trusted 
function or functions.”

The Council has made similar statements over the years in the 
mistaken assumption that HSMs are only hardware.  HSMs are 
hardware that use software to manage keys.  There are standards 
that are followed (e.g., FIPS 140) to ensure that the HSM remains 
secure, but these devices are predominately software driven.  
That is not to say that just any device can serve as an HSM, but a 
lot of us in the security community are concerned that the Coun-
cil continues to perpetuate a myth that HSMs are only hardware, 
which is patently false.

My other issue comes on page six as part of the discussion regard-
ing the use of SMS for MFA.

“PCI DSS relies on industry standards—such as NIST, ISO, and 
ANSI—that cover all industries, not just the payments industry. 

The Council Gets a Clue
By Jeff Hall – ISSA member, Minnesota Chapter

Jeff Hall – PCI Guru
The Council Gets a Clue
By Jeff Hall – ISSA member, Minnesota Chapter
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Figure 2 – The Mean and Standard Deviation Model 

The Multivariate Model is similar to the mean and standard 
deviation model, but is based on the correlation of multiple 
metrics rather than just a single metric. For example, buffer 
overflow attacks typically use not only a large input, but the 
byte values in the input are often highly repetitive (e.g., as 
in the Code Red Worm buffer overflow signature described 
above, which contains a long string of ASCII “N” characters 
13). Instead of just using the length of an input to a web field, 
our hypothetical ISSA quick search anomaly detector might 
look at both length and the character distribution of the input 
in order to reduce false positives [17].
The Markov Process Model calculates profiles based on the 
probabilities of sequences of events, rather than on the sta-
tistics of single events. An example of an anomaly detection 
system that uses the Markov process model is the time-based 
inductive-learning approach described by Teng, et. al [20]. 
The system observes the ordering of events and creates prob-

of time (such as CPU time used by a program during a single 
execution). 
Denning’s five statistical models are Operational, Mean and 
Standard Deviation, Multivariat, Markov Process, and Time 
Series. 
The Operational Model is based on determining fixed up-
per and lower bounds on observed characteristics. A limit of 
three failed logins before locking a person out of a system is 
an example of the operational model, where the lower and 
upper bounds on normal are (0, 2). 
The Mean and Standard Deviation Model uses the first two 
statistical moments (i.e., mean and standard deviation) of the 
distribution of observed behavior. A new observation is de-
termined to be abnormal if it falls outside a specified confi-
dence interval, which is some number of standard deviations 
on either side of the mean. The confidence interval is a bound 
on the probability of the occurrence of that particular behav-
ior. For example, as shown in figure 2, observed behaviors 
that fall outside a confidence interval of three standard de-
viations only happen 0.2 percent of the time. The ISSA quick 
search input length example mentioned above is an example 
of applying the mean and standard deviation model. If the 
profile were set at three standard deviations (3s) above the 
mean, the IDS should alert on only 0.1 percent of the accesses 
to that form field (we don’t care about shorter input lengths 
below the mean in this case, because that is not correlated 
with buffer overflow attacks).

  

While NIST currently permits the use of SMS, they have ad-
vised that out-of-band authentication using SMS or voice has 
been deprecated and may be removed from future releases 
of their publication.”

While everything in this statement is accurate, it gives the un-
initiated the impression that SMS or voice is no longer a valid 
MFA solution.  I know this to be true because I have fielded a 
number of questions from clients and prospects on this subject, 
particularly about SMS.  The key is that this is not SSL and early 
TLS where NIST called them out as insecure and to no longer be 
used.  This is a “heads up” from NIST to everyone that there is 
an issue that makes SMS and voice not secure enough for MFA.

But while there is a risk, a lot of us in the security community 
question the viability of that risk when matched against mer-
chant risk versus a bank or a government agency.  While I would 
not want any bank or government agency to use SMS or voice 
for MFA, a small business may not have a choice given their solu-
tion.  The reason is that the risk of an attack on SMS or voice 
is such that only a high value target such as a bank or govern-
ment agency would be worth such an effort.  In my very humble 
opinion, while a total ban is the easy solution, this is an instance 
where the Council should take a more nuanced approach to-
ward the use of SMS and voice for MFA.  The bottom line to me 
is that small merchants using any MFA solution, even if flawed, is 
better than using no MFA solution.

I would recommend the following approach to manage this risk:

•	Level 4 merchants can be allowed to use SMS or voice for 
MFA.

•	Level 1, 2, and 3 merchants would be allowed to transition 
away from SMS and voice to a more secure MFA solution 
within one year of NIST stating that they are no longer ac-
ceptable.

•	All service providers would not be allowed to use SMS or 
voice for MFA once NIST states that both are no longer ac-
ceptable.  This means service providers should start transi-
tioning now if they use either.

Those are my thoughts on the subject.  I look forward to the 
comments I am sure to receive.

About the Author 
Jeff Hall, CISSP, CISM, is a Principal Security Con-
sultant in Optiv Security’s Governance, Risk & 
Compliance practice and focuses on payment 
card industry and related security projects. Jeff 
has over 30 years of technology and compliance 
experience and is certified in the governance 
of enterprise information technology and a PCI 
QSA. Check out PCI Guru blog or contact him at Jeff.Hall@optiv.
com.

June 2017 | ISSA Journal – 27

The Promise and Limits of Big Data for Improving Intrusion Detection | Mark R. Heckman

https://pciguru.wordpress.com
mailto:Jeff.Hall%40optiv.com?subject=
mailto:Jeff.Hall%40optiv.com?subject=


The Time Series Model is like the Markov process model but 
takes into account both the order of events and the inter-ar-
rival times. An example of an anomaly detection system that 
uses the time series model is a system that detects an irreg-
ular heartbeat. In figure 3, the electrocardiogram depicts an 
irregular heartbeat. None of the readings in the abnormal flat 
region are anomalous by themselves, however, because they 
also occur during the course of normal heart rhythm. Only 
the order and relative time between the readings make that 
region anomalous.

Figure 3 – Time series model example detecting an irregular heartbeat

Challenges to anomaly detection
For all of the potential of anomaly detection, there are some 
real challenges that must be overcome to build a useful anom-
aly detection system. What is anomalous, for example, is not 
necessarily bad. If while training the system has not seen 
the complete range of allowed behaviors, or if some allowed 
behaviors were rare in the training data, the previously un-
seen—but good—behaviors will likely cause many false posi-
tives. Similarly, what is normal is not necessarily good. What 
if, for example, an attacker is already in place? A backdoor 
port might “normally” be open and the anomaly detecti on 
system would never alert on it, resulting in many false neg-
atives.
Defining normal in complex, chaotic systems is not easy. Data 
is noisy and boundaries between normal and anomalous be-
havior may not be precise. In figure 1, for example, why is 
anomalous event a1, which is very close to the normal range, 
outside of it? If a different set of training data was given to 
the system, a1 might very well have been considered part of 
the normal profile. A slight change in the trained profile can 
have a large effect on the number of false positives and false 
negatives.
Normal activity in many systems is highly variable. It may 
vary by time of day, day of week, or season. An anomaly 
detection system unable to identify cyclical, often complex 
patterns will have a large number of false positives or false 
negatives at different times for the same training profiles. But 
as users, installed programs, hosts, and other factors change 
over time, so too will the profile of normal activity. Anomaly 
detection systems typically handle change to normal system 
behavior over time by continually recalculating profiles, giv-
ing more weight to recent activity (see the sidebar “Weight-
ing”) than to older activity. If, however, behavior is cyclical 
then the system might always be chasing normal, constantly 
playing catch up, with the profiles always inaccurate. In such 
a case, the accuracy of the system might have been better 
if the system had simply kept the original profiles constant 
(much like a broken clock is correct twice a day). 

ability-based rules. Having observed, for example, this series 
of events: A-B-C-S-T-S-T-A-B-C-A-B-C, the system will gen-
erate the following rules:

R1: A - B à (C, 100%) C follows A-B with 100% probability
R2: C à (S, 50%; A, 50%) C is followed by S 50% of the 
time and A 50% of the time
R3: S à (T, 100%)
R4: T à (A, 50%; S, 50%)

R2 and R4 have very poor predictive power and will not be-
come part of the profile, but R1 and R3 have good predictive 
power. If the system were to ever see the sequence A-B-D, for 
example, that would trigger an alert because it violates Rule R1. 
Markov models are frequently used in systems where the 
statistical difference between normal behavior and attacks 
is not large, which could lead to high false-positive or high 
false-negative rates. For example, the HMMPayl system uses 
a Markov model based on sequences of characters to detect 
common attacks against web applications (such as XSS and 
SQL-Injection) where statistical measurements, such as input 
length or character distribution are insufficiently precise [2]. 
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real attacks is typically very small. This means that even a low 
false-positive rate can produce a very large number of bogus 
alerts. While it may seem more useful for an IDS to identify 
as many attacks as possible, a large number of false positives 
can have a greater impact on the perceived usefulness of an 
IDS to security analysts (see the sidebar “The Problem with 
False Positives”). Anomaly detection systems that depend on 
statistical models are particularly susceptible to false posi-
tives in this way.

Big data techniques and their application to 
intrusion detection
Data is records, statistics, and other objective facts or empiri-
cal observations. Information, on the other hand, is useful in-
terpretations of data. Big data techniques cover the collection, 
storage, and analysis of large data sets in order to generate 
useful information. 
Big data is typically defined in terms of the “3 Vs”[18]:

1.	 Volume—the sheer scale of data there is to collect
2.	 Velocity—the rate at which new data can be analyzed
3.	 Variety—the tremendous diversity of data sources  

The ability to store, search, and analyze large amounts of log 
data, particularly log data from heterogeneous sources, is es-
sential for reducing false positives and negatives, yet organi-
zations using traditional data management techniques, such 
as relational databases, may still struggle to handle the flood 
of log data.
A 2013 report from the Cloud Security Alliance, for example, 
says that “it is estimated that an enterprise as large as HP cur-
rently (in 2013) generates 1 trillion events per day, or roughly 
12 million events per second” [4]. Organizations using tradi-
tional data management techniques, such as relational data-
bases, cannot handle the growing flood of data. New big data 
techniques, however, such as Hadoop and Hive permit the 
management, search, and analysis of much greater amounts 
of log information than previously possible [9]. Hadoop ar-
chitecture is a software framework for storing and processing 
large quantities of unstructured, distributed data [15]. Hive is 
a structured query infrastructure for making queries on top 
of Hadoop [1]. Big data techniques such as these are starting 
to be used in intrusion detection [22]. In one case study, Zi-
ons Bank reported that their security systems generated three 
terabytes of data per week. Storing and searching the data us-
ing Hadoop and Hive cut the search time for a month of log 
data from up to an hour down to a minute [9].
Data mining is a catchall term for the process of collecting, 
searching, and analyzing large amounts of data to discover 
useful patterns or relationships. It is difficult for humans to 
find meaningful associations between disparate data items 
in huge data sets from many different sources, so big data 
techniques include machine learning—a type of artificial 
intelligence where computers can learn without being pro-
grammed. Machine learning can be used in intrusion detec-
tion to automatically find meaningful relationships between 

Moreover, the accuracy of anomaly detection systems de-
pends heavily on the choice of monitored events. While some 
types of events may be strongly correlated with good behav-
iors (or correlated with bad behaviors), others may be com-
pletely independent. If a system is trained on independent 
data, the profiles will be irrelevant and potentially result in 
many false positives and false negatives. But determining in 
advance the usefulness of particular features in the data is 
not a simple problem. One solution is to increase the variety 
and number of event records that are included in the train-
ing. But simply collecting and examining every possible type 
of log record that a system can produce is difficult and time 
consuming. It can be difficult to collect, store, search, ana-
lyze, and correlate so many events and to determine which, if 
any, provide useful information. The problem of determining 
correlations between different varieties of data, moreover, in-
creases exponentially with the number of varieties.
Within the vast quantity of data that must be continually 
scanned by an IDS, the number of events that correspond to 

SIDEBAR

Weighting
An anomaly detection system must be able to adjust the 
profile to compensate for changes over time, a process that 
is usually accomplished by weighting recently observed 
behavior more heavily than older behavior. For example, 
consider an anomaly detection system that counts the 
number of occurrences of a certain event Cn for each day n. 
The system compares day n’s count Cn against the expect-
ed, “normal” value for that day En to see if that day’s count 
is anomalous (e.g., using the mean and standard deviation 
model described in the article). We can calculate the ex-
pected count for day n, En, as the weighted summation of 
previous days:

En = 2-1 * Cn-1 + 2-2 * Cn-2 + 2-3 * Cn-3 + …

In words, the expected value for today (day n) is calculat-
ed as one-half of the observed value for yesterday (day n-1) 
plus one quarter of the observed value for two days ago 
(day n-2) plus one-eighth of the value for three days ago 
(day n-3) plus … and so on. This gives yesterday’s observed 
count the same weight as all of the counts observed on pre-
vious days together. The summation works well for weight-
ing because 1/2 + 1/4 + 1/8 + 1/16 + 
⋯ = 1, as depicted in figure 4.
			   Figure 4 – The 

summation of 1/2 + 1/4 + 1/8 + 1/16 …

Because the expected value for a 
day is calculated using the observed 
counts from all previous days, the ex-
pected value is easy for a computer 
to update each day using the simpler formula

En = 0.5 * (Cn-1 + En-1)

Coming up with a meaningful and accurate weighting 
scheme in complex systems, however, is generally not this 
simple.

Continued on page 43
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data items. A machine learning system observes collected 
data, applies analytical algorithms to determine patterns, 
and creates analytical models. Hui Wang, senior director of 
global risk and data sciences at PayPal, which uses machine 

learning to identify fraud, praises advanced machine learn-
ing, saying it can “see” things that “even human beings might 
not be able to see” [8].

The Promise and Limits of Big Data for Improving Intrusion Detection
Continued from page 29

SIDEBAR

The Problem with False Positives
At first glance, it may seem obvious that the ability of an IDS 
to alert on as many intrusions as possible, minimizing the 
number of attacks that are missed (false negatives), is more 
important than minimizing the number of false alarms (false 
positives). But false positives tend to have a greater impact on 
the perceived usefulness of an IDS than do false negatives be-
cause false positives are false alarms that waste analysts’ time. 
An IDS that has too many false positives will eventually be ig-
nored or simply unplugged.

Let us define the “utility” of an IDS as the probability that an 
attack really happened when the IDS alerts. That is, Utility = TP 
/ (TP + FP), where TP is the number of true positives (alerts due 
to a real attack) and FP is the number of false positives (alerts 
when there is no attack). Similarly, we will also label the num-
ber of false negatives FN (failures to alert when there is a real 
attack) and the number of true negatives TN (lack of alerts, 
correctly, when there is no attack). To increase the utility of an 
IDS, you must either increase TP or decrease FP. Let us assume 
that we have a very accurate IDS with a 99 percent TP rate and 
only a one percent FP rate. This means that 99 percent of the 
time that an attack happens, the system correctly alerts, and 
only one percent of the time that a non-attack event happens, 
the system incorrectly alerts. (The corresponding values for 
FN and TN rates: FN rate = 1 – TP rate = 1%, TN rate = 1 – FP 
rate = 99%.)

Let us further assume that there is a fairly constant attack rate 
and that one out of every 10,000 events is malicious (i.e., the 
attack density is 1/10000).

We will calculate the utility using Bayes’ rule, where Pr(X|Y) is 
the probability of X given Y.

Bayes’ rule: Pr(X|Y) = (Pr(Y|X) * Pr(X))/Pr(Y)

If we designate attacks by the letter A and alerts by the letter 
L, the utility—the probability that an attack really happened 
when the IDS alerts—is denoted by Pr(A|L). 

The probability of an event being an attack—Pr(A)—is 
1/10000 = 0.0001. The probability, therefore, that an event is 

not part of an attack—Pr(⌐A)—is (1 - 0.0001) = 0.9999. We are 
assuming that the probability of alerting on a real attack (TP) 
is 99 percent, which means Pr(L|A) = 0.99, and the probability 
of alerting on a non-attack (FP) is one percent, so Pr(L|⌐A) = 
0.01. The probability of an alert (whether a TP or FP) on any 
given event Pr(L), is the probability of alerting on a real attack 
times the probability of the event being a real attack plus the 
probability of alerting on a non-attack times the probability of 
the event not being an attack:

Pr(L) = Pr(L|A)*Pr(A) + Pr(L|⌐A)*Pr(⌐A) = (0.99)(0.0001) + (0.01)
(0.9999) = 0.010098

Now we are ready to apply Bayes’ rule to calculate the utility 
of the IDS, Pr(A|L):

So a 99 percent accurate detector (i.e., both a 99 percent TP 
rate and 99 percent TN rate) would have less than one per-
cent utility. Another way of stating that result is that out of 100 
alerts, only one alert would reflect a real attack. This is a ma-
jor problem with IDSs: The inability to suppress false positives 
can greatly reduce the usefulness of the system.

But which are the most significant factors in the high false-pos-
itive rate and can we easily fix those factors to improve the 
utility of the IDS? To find the factors, let us change one param-
eter at a time in our assumed IDS. In order to get the utility of 
the system to 50 percent, table 1 shows that we either have to 
increase the attack density from 1/10000 to an unrealistically 
high 1/100, or else drop the FP rate from 1/100 to an extremely 
low 1/10000. To achieve a 99 percent utility, the FP rate has to 
drop to the proverbial one in a million.

What these calculations show is that, because intrusions are 
typically rare events and non-intrusions are vastly more com-
mon, true positives are generally swamped by false positives. 
The rate of attacks is out of our control, so our only hope for 
increasing the utility of our IDS is to be able to decrease the 
false positive rate of our system. But, as the article explains, 
there are many challenges to reducing the false positive rate 
in IDSs.

Parameter Set Attack Density Pr(A) Probability of an alert Pr(L) True Positive Pr(L|A) False Positive Pr(L|⌐A) Utility Pr(A|L)

Original 0.0001 0.010098 0.99 0.01 0.0098

I 0.0001 0.010098999 0.99999 0.01 0.0099

II 0.01 0.0198 0.99 0.01 0.5

III 0.0001 0.00019899 0.99 0.0001 0.5

IV 0.0001 0.0000999999 0.99 0.000001 0.99

Table 1
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tive labels such as “legitimate process” and “malware,” while 
unsupervised learning can be used for objective labeling of 
data, such as “normal” and “anomalous.” (For a longer dis-
cussion of how machine learning works, see Stephen Jou’s 
August 2016 article in the ISSA Journal, “Machine Learning: 
A Primer for Security.” [16])
As mentioned earlier, however, the use of machine learning 
in intrusion detection is not new. Automatically generated 
anomaly detection system profiles are an example of ma-
chine learning. But today’s machine learning systems, built 
on infrastructure such as Hadoop and Hive, are capable of 
processing vastly greater quantities and varieties of data at 
high speed. This, then, is the major promise of big data for 
intrusion detection: scale and speed.

Use and limits of big data for misuse detection
Development of misuse detection signatures has typically 
been a “manual” process, where expert human knowledge 
is converted into an analytical model. Expert system rule 
models of this type are static and don’t automatically adapt 
over time. Malware writers know this and construct defens-
es within malware against intrusion detection to prevent the 
malware from matching a signature. Polymorphic malware 
is an example defense against detection by an IDS. Polymor-
phic malware mutates, so the code won’t match an existing 
signature but preserves the original algorithm. There are an 
almost infinite number of ways that malware can mutate. The 
code itself can be reordered, or it can be encrypted using dif-
ferent keys, or its purpose can be obfuscated, and it is impos-
sible for signature databases to encompass all of the possible 
signatures, even if signature writers could keep up. 
But now some commercial IDSs are using machine learning 
to automatically generate more general, abstract signatures 
for known attacks (Endgame is one vendor that claims to 
offer an IDS of this type [12]). By looking at common fea-
tures, the vendors claim, misuse detection systems will avoid 
being fooled by polymorphic variations of the malware and 
can even detect new malware that uses the same attack tech-
niques as known malware, sharply reducing false negatives. 
On the other hand, while machine learning-generated signa-
tures are signatures on steroids, they can nevertheless only be 
used to detect previously identified “bad” behavior. Misuse 
detection systems that use machine learning-generated sig-
natures will still not be able to identify truly new attacks that 
do not share characteristics with older malware for which sig-
natures already exist. This means that attackers will continue 
to be able to find ways to prevent detection of malware and 
that machine learning-generated signatures, although a ma-
jor improvement over human-generated signatures, may be 
just one more step in the continuing arms race between cyber 
attackers and defenders.

Use and limits of big data for specification-based detection
As mentioned above, specifications are created a priori from 
theoretical reasoning about legitimate behavior, rather than 

Machine learning systems may engage in what is called “su-
pervised” or “unsupervised” learning. In supervised learn-
ing, humans label data to guide the development of models. 
For example, a machine learning system does not know on its 
own the difference between legitimate and malicious activity. 
The system needs to be given training data containing both 
types of activity, and a human must provide feedback to the 
system for it to learn the difference. In unsupervised learning, 
the system tries on its own to identify data clusters based on 
objective criteria. Supervised learning is necessary for subjec-
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by empirical observation of behavior. Because big data tech-
niques are aimed at extracting information from empirical 
observation, specification-based intrusion detection will 
likely benefit the least of the three intrusion detection meth-
ods from big data techniques.
Yet, big data techniques can be used to help guide the cre-
ation of specifications. Specification developers can create 
rough specifications and compare them against a large stored 
database of empirical observations of system behavior. The 
results of that comparison can be used to refine the specifica-
tions. But using empirical data to help guide the creation of 
specifications is not itself new; the chief contribution of big 
data in this case would be increased scale and speed of the 
comparison.

Use and limits of big data for anomaly detection
Anomaly detection training is a process of collecting, search-
ing, and analyzing data to determine patterns or relation-
ships in the data (i.e., profiles) that indicate normal behavior 
and that may be associated with legitimate activity. Big data 
techniques permit the collection, searching, and analysis of 
much greater quantities of event data than was possible be-
fore, providing a foundation for advanced analysis. Big data 
thus seems tailor-made for improving anomaly detection.
The ability to handle greater quantities and types of log data 
could help increase the accuracy of profiles by observing 
larger sets of training data and thereby reducing the effect 
of noise in the data, but even big data techniques are not a 
complete panacea. Increasing data volume, velocity, and vari-
ety can overwhelm the ability of even a big data-enabled sys-
tem to analyze the data. Advances in processing data must be 
matched by advances in feature selection in order to improve 
the accuracy of profiles and to reduce the data overload. Ma-
chine learning can help with this by identifying useful fea-
tures and eliminating irrelevant and redundant features from 
training [14]. Machine learning can also be applied to pro-
file even highly variable activity that varies over time. And 
advanced correlation algorithms could help find subtle and 
complex relationships in heterogeneous data that were not 
findable using older techniques [22].
Yet, other fundamental problems of anomaly detection still 
apply, even if an IDS is big data-enabled. Just because we can 
collect and analyze more data, it doesn’t necessarily follow 

that the extra data contains any more useful information. 
And what is anomalous, as mentioned earlier, is not neces-
sarily bad and what is normal is not necessarily good. The 
scale and speed of big data could, in the worst case, increase, 
rather than decrease, the number of false positives and false 
negatives.

Conclusion
The set of techniques collectively referred to as big data offers 
the promise of collecting, storing, processing, and analyzing 
data at unprecedented scale and speed. It is hoped that the 
application of big data to the problem of intrusion detection 
will greatly improve results by reducing false-positive and 
false-negative alert rates.
But the belief that there are much more accurate anomaly de-
tection profiles to be created, for example, if only we could 
examine data in the right way, is still unsupported. Com-
plex, chaotic systems with fuzzy boundaries between normal 
and anomalous may remain resistant to analysis no matter 
how many data mining and machine learning algorithms we 
bring to bear on the problem. And improved signatures cre-
ated using big data techniques and used in misuse detection 
systems are still just signatures, leaving systems just as unable 
to detect new attacks as they were before. It could also turn 
out that, even if big data techniques can improve intrusion 
detection, the overall improvement is slight. We are still early 
in the application of big data to intrusion detection and there 
is much potential, but fundamental limits in intrusion detec-
tion mean that big data cannot be a magic bullet. 
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