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This article discusses the essential problems in intrusion detection and how big data techniques
have been successfully applied to overcome some of the problems, but also explains some
fundamental limits that could prevent big data from achieving all of the promises.

Abstract

The usefulness of intrusion detection systems frequently suf-
fers from a high rate of false-negative alerts—failure to gen-
erate alerts when an attack occurs, and false-positive alerts—
alerts when no attack is taking place. False-negative alerts
mean analysts will not detect an attack, while false-positive
alerts distract analysts and may obscure alerts that indicate
real attacks. Advances in big data analytical techniques raise
the hope that these techniques could be used to vastly im-
prove intrusion detection. This article discusses the essential
problems in intrusion detection and how big data techniques
have been successfully applied to overcome some of the prob-
lems, but also explains some fundamental limits that could
prevent big data from achieving all of the promises.

tracting useful information from large volumes of

data. Big data techniques such as data mining and
machine learning have already proven their usefulness in
complex predictive analytics, pattern recognition, and clas-
sification problems in many different fields. Advances in big
data techniques raise the hope that they could be applied to
solve one of the most intractable problems in cybersecurity:

B ig Data is a term used to describe techniques for ex-
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high false-negative and false-positive alert rates in intrusion
detection systems.

Intrusion detection is the monitoring of system events to
detect activity that violates the system security policy. An
intrusion detection system (IDS) must analyze large quan-
tities of data, usually in real time, and attempt to pick out
and correlate events that indicate an attack is occurring. But
that is not an easy task in large, complex, and chaotic sys-
tems, which means that most IDSs suffer from high rates of
false-negative alerts, false-positive alerts, or both:

o False negatives occur when an IDS fails to alert on a real
attack. An IDS that has too many false negatives is simply
not very good at detecting attacks.

e False positives occur when an IDS alerts on a suspected
attack when no attack has happened. An IDS that has too
many false positives will waste the time of security ana-
lysts who may miss real attacks—true positives—in the
false-positive noise.

The promise of big data for intrusion detection is obvious:
Advanced data analytic techniques will, it is hoped, sharply
reduce the rate of false positives and false negatives, making
IDSs much more accurate at detecting attacks and ignoring
benign behavior. But the use of machine learning for intru-
sion detection is not new. Automatic generation of statisti-
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cal models of normal and abnormal activity, for example,
goes back 30 years or more (e.g., see D.E. Denning, An In-
trusion-Detection Model, 1987 [11]). What is it about today’s
technology that promises to do so much better? The following
sections will explain the challenges of intrusion detection,
discuss how big data is already being used to improve results,
and clarify some limits on what big data can do for improving
intrusion detection.

Intrusion detection techniques

An IDS works much like a burglar alarm for computer sys-
tems. The IDS monitors system events—network, host, or ap-
plication—and generates alerts when it detects behavior that
violates the system security policy. The chief goals of an IDS
are to detect as wide a variety of attacks as possible, includ-
ing both previously known and unknown attacks, in a timely
fashion while maintaining high accuracy (i.e., minimizing
false negatives and false positives).

It was proven decades ago that the problem of detecting vi-
ruses is undecidable - that is, there is no possible generic
algorithm that will perfectly detect all viruses (i.e., no false
positives or false negatives) [7]. A similar argument can be
made that there is no way to perfectly identify intrusions in
general (see sidebar “Why a Perfect IDS Is Impossible”), but
just because a detection system isn’t perfect, doesn’t mean it
can’t be good enough to be useful.

There are three general approaches to intrusion detection:
1) misuse detection—defining specific bad behavior so that,
implicitly, everything else is considered to be good, 2) speci-
fication-based detection—defining specific good behavior so
that, implicitly, everything else is bad, and 3) anomaly de-
tection—automatically generating a specification for “nor-
mal” behavior with the expectation that normal behavior is
more closely associated with “good” and abnormal behavior
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is more closely correlated with “bad” [3]. An IDS might use
one or a combination of these methods.

The following sections briefly explain misuse and specifi-
cation-based detection. Because anomaly detection is the
intrusion detection approach that may be most amenable
to improvement using big data techniques (for reasons ex-
plained below), the description of anomaly detection is more
in-depth.

Misuse detection

Misuse detection systems work by comparing observed data
against a database of stored “signatures” or “rules”—data
previously shown to correlate with attacks. When observed
data matches a signature, the system raises an alert. A classic
example of a misuse detection system is antivirus software.
The virus definition database constitutes the signatures. Sig-
natures may consist of strings of bits unique to particular ma-
licious software (malware) object code, a unique command or
set of commands executed by malware, or a suspicious pat-
tern of commands.

For example, the Code Red worm of 2001 used a buffer over-
flow attack containing the following unique data string that
could be used as a signature [13]:

/default.ida? NNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN-
NN%u9090%u6858%ucbcd3%7801%u9090%u6805%uch-
d3%u7801

The Solaris Sadmind/IIS worm (also 2001) executed the fol-
lowing unique command that could be used as a signature [5]:
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GET/ scripts/../../winnt/system32/cmd.exe /c+ copy+\wint\
system32\CMD.exe+root.exe

The creation of new signatures has generally been a manual
(i.e., human) process that calls for a high level of expertise.
A signature developer examines captured malware and tries
to develop a signature that is neither too general nor too spe-
cific. If a signature is too general, it will lead to false posi-

SIDEBAR
Why a perfect IDS is impossible

Fred Cohen in 1984 proved that the problem of detecting
viruses is undecidable—that is, there is no possible generic
algorithm to accurately detect all viruses [7]. This argument
was later extended to all malware in general. Thus, a per-
fect IDS (no false positives or false negatives) is impossible.
The argument is based on the most famous of all comput-
er science proofs, called the Halting Problem. The halting
problem, created by Alan Turing in the 1930s, asks if there is
a generic algorithm that takes as input a program and input
to that program and that can determine if the program will
ever terminate (i.e., halt) on that input. While it is certainly
possible for some programs and inputs to detect if the pro-
gram will halt or not, Turing proved that it was impossible
in the general case [21]. Ever since in computer science it is
sufficient to show that a problem is undecidable if solving it
would require a solution to the halting problem.

That is what Cohen did. He showed that the problem of de-
tecting all viruses is solvable only if there is a solution to the
halting problem. But the halting problem is known to be
undecidable so the problem of detecting all viruses is also
undecidable. Cohen formulated the problem in this way: A
perfect virus detector should emit an alarm if and only if the
potential virus passed as input to the detector can ever in-
fect and damage the host (i.e., the virus detector is perfect
if it has no false positives and no false negatives). Consider
the following program:

f0;
infect();

If the function f() can return, then this is a virus and the de-
tector should alert. If, however, () is in an infinite loop and
will never return, then no infection is possible, so the virus
detector should not alert. But coming up with the correct
answer would require the virus detector to know if f() will
halt or not, so the detection problem is equivalent to the
halting problem, which is known to be undecidable.

Note that it is easy to create a system with a 0 percent
false-negative rate: simply alert on every event. But, of
course, that will yield a 100 percent false-positive rate. Con-
versely, a system can have a 0 percent false-positive rate
simply by never alerting on any events, but that obvious-
ly will yield a 100 percent false negative rate. There is no
way, in general, to simultaneously have both a 0 percent
false-positive and 0 percent false-negative rate. Because
perfection is impossible, an IDS must make a tradeoff be-
tween false-positive and false-negative rates.
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tives. If a signature is too specific, it may miss some instances
of the same attack, leading to false negatives. But typically
signatures are very precisely defined, so misuse detection
systems usually have a low false-positive rate. A misuse de-
tection system, however, can only detect attacks for which a
signature has been created. If there is no matching signature,
the system will not detect an attack. Even slight variations in
malware can mean that old signatures will no longer match,
and misuse detection systems are completely unable to detect
new attacks because no signatures can yet exist, leading to
high false-negative rates. For this reason, signature databases
quickly become obsolete and a misuse detection system must
frequently download new signature databases.

Specification-based detection

A specification-based system compares observed data against
a database of legitimate behaviors. Whenever the observed
behavior does not match a record in the database of legiti-
mate behaviors, the system raises an alert. This approach is
excellent at detecting previously unknown attacks because,
by definition, attacks are not legitimate activity and will not
match the specification, so specification-based IDSs can have
low false-negative rates.

Given complete and detailed specifications for the complete
range of legitimate activity in a system, specification-based
IDSs can also have low false-positive rates. But creating such
specifications in all but simple systems is difficult and er-
ror-prone, so specifications in complex systems are likely to
be inaccurate, leading to very high false-positive rates. For
this reason, specification-based IDSs are chiefly used in sys-
tems with well-defined, regular processing activity such as
medical [19] and SCADA devices [6].

An example of behavior specifications in a medical device
is a set of 11 rules for an IDS that monitors a medical cyber
physical system (MCPS) [19]. The MCPS consists of vital sign
monitor, patient controlled analgesia, and cardiac devices.
The rules require that actual sensor readings (for pulse, blood
pressure, etc.) match the readings shown on the monitor, that
the patient is in a debilitated state (e.g., his heart is fibrillat-
ing) before treatment (in this case, defibrillation) is given, and
that the automatically provided treatment is in the safe range
(e.g., the analgesic request rate is below a safe threshold). The
IDS alerts any time the observed state of the system violates
any of the rules.

Specifications are created from theoretical reasoning about
legitimate behavior, rather than by empirical observation of
data as the system is being used. But big data techniques are
aimed at extracting information from empirical observation
of large data sets. For this reason, specification-based intru-
sion detection is the least likely intrusion detection method to
benefit from big data techniques.

Anomaly detection

Anomaly detection is the identification of activity in ob-
served data that does not conform to expected behavior. Like
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specification-based intrusion detection, observed behavior
is compared against a database of expected behaviors, and
outliers cause the system to alert. Unlike specification-based
intrusion detection, however, where the specifications are de-
fined ahead of time and remain fixed, the expected behavior
in anomaly detection is defined through analysis of empirical
data and can adapt as “normal” behavior changes over time.

The key assumption of anomaly detection is that attacks ex-
hibit characteristics that are different than those of normal
behavior [11]. Anomaly detection works by analyzing a set
of system characteristics and comparing its values against a
recorded baseline, or profile, that represents what is normal
for the system. Outliers are labeled “anomalous.” Anomalous
events are assigned a score based on the degree of anoma-
lousness. When the degree of anomalousness exceeds some
threshold parameter, the system
raises an alert. Figure 1 abstract-

ly depicts a profile (the circle) Y
around behaviors considered
“normal.” Behaviors al and a2 Normal

are anomalous, where a2, being range °

farther away from “normal,” has a?
a higher degree of anomalous-
ness.

>

Figure 1 — “Normal” profile with X

anomalous outliers

The process of calculating a profile is called training. Training
typically uses values observed while the system is running.
Because normal behavior can vary quite widely, a profile must

The Council Gets a Clue

By Jeff Hall - 1ssA member, Minnesota Chapter

FEBRUARY 2017, the PCI Security Standards Council issued a
new information supplement titled “Multi-Factor Authentica-
tion" after the brew-ha-ha that occurred last fall at the communi-
ty meeting in Las Vegas. For once, the Council has issued a great
reference regarding the issues of multi-factor authentication
(MFA). I still have a couple of minor bones to pick about this docu-
ment, but more on that later.

If you understand the concepts of MFA, you can skip through the
document to the end where the Council presents four scenarios
on good and bad MFA. These are well documented and explain
the thought process behind why the scenario works or does not
work for MFA. The key take away of all of this is the independence
of the MFA solution from the logon process. The Council is get-
ting in front of the curve here and stopping people from creating
insecure situations where they believe they are using MFA that
minimizes or stops breaches through administrators or users with
access to bulk card data.

Now for a few things that | do not necessarily agree with in this
document.

1 “Multi-Factor Authentication,” PCI Security Standards Council, February 2017 - https://
www.pcisecuritystandards.org/pdfs/Multi-Factor- Authentication-Guidance-v1.pdf.
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be developed over the course of many observations. For ex-
ample, consider if the ISSA wanted to use anomaly detection
to detect buffer overflow attacks on the quick search field of
the ISSA home page (www.issa.org). The IDS might observe
the length of search terms over many searches, calculate the
average input length, and store that average as a profile. An
input value that greatly exceeds that average could represent
a potential buffer overflow and would trigger an alert.

Not all data is equally useful in differentiating normal from
anomalous behavior. Choosing the attributes to train on—a
process called feature selection—is as important or more than
the algorithm used to create profiles. For example, while the
length of search terms in the ISSA quick search field is cor-
related with buffer overflow attacks, the type of characters
in the input string—numbers or letters, say—may not be. It
would likely be impossible for the system to create meaning-
ful profiles if it trained on the type of characters.

Anomaly detection models

Denning identified three metrics and five statistical models
for anomaly detection [11]. Most, if not all, anomaly detection
systems used today still depend on these same basic metrics
and statistical models. The metrics are an event counter that
represents the number of occurrences of an event during a
period of time (such as the number of failed logins in one
minute), an interval timer that represents the length of time
between two related events (such as the length of time be-
tween two successive logins to the same account), and the
quantity of resources consumed by an action during a period

The first involves the Council’s continued belief that hardware se-
curity modules (HSM) are actually only hardware. On page four,

the following statement is made.

“Hardware cryptographic modules are preferred over software
due to theirimmutability, smaller attack surfaces, and more re-
liable behavior; as such, they can provide a higher degree of
assurance that they can be relied upon to perform their trusted
function or functions.”

The Council has made similar statements over the years in the
mistaken assumption that HSMs are only hardware. HSMs are
hardware that use software to manage keys. There are standards
that are followed (e.g., FIPS 140) to ensure that the HSM remains
secure, but these devices are predominately software driven.
That is not to say that just any device can serve as an HSM, but a
lot of us in the security community are concerned that the Coun-
cil continues to perpetuate a myth that HSMs are only hardware,
which is patently false.

My other issue comes on page six as part of the discussion regard-
ing the use of SMS for MFA.

“PCI DSS relies on industry standards—such as NIST, ISO, and
ANSI—that cover all industries, not just the payments industry.
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of time (such as CPU time used by a program during a single
execution).

Denning’s five statistical models are Operational, Mean and
Standard Deviation, Multivariat, Markov Process, and Time
Series.

The Operational Model is based on determining fixed up-
per and lower bounds on observed characteristics. A limit of
three failed logins before locking a person out of a system is
an example of the operational model, where the lower and
upper bounds on normal are (0, 2).

The Mean and Standard Deviation Model uses the first two
statistical moments (i.e., mean and standard deviation) of the
distribution of observed behavior. A new observation is de-
termined to be abnormal if it falls outside a specified confi-
dence interval, which is some number of standard deviations
on either side of the mean. The confidence interval is a bound
on the probability of the occurrence of that particular behav-
ior. For example, as shown in figure 2, observed behaviors
that fall outside a confidence interval of three standard de-
viations only happen 0.2 percent of the time. The ISSA quick
search input length example mentioned above is an example
of applying the mean and standard deviation model. If the
profile were set at three standard deviations (30) above the
mean, the IDS should alert on only 0.1 percent of the accesses
to that form field (we don’t care about shorter input lengths
below the mean in this case, because that is not correlated
with buffer overflow attacks).

While NIST currently permits the use of SMS, they have ad-
vised that out-of-band authentication using SMS or voice has
been deprecated and may be removed from future releases
of their publication.”

While everything in this statement is accurate, it gives the un-
initiated the impression that SMS or voice is no longer a valid
MFA solution. | know this to be true because | have fielded a
number of questions from clients and prospects on this subject,
particularly about SMS. The key is that this is not SSL and early
TLS where NIST called them out as insecure and to no longer be
used. This is a “heads up” from NIST to everyone that there is
an issue that makes SMS and voice not secure enough for MFA.

But while there is a risk, a lot of us in the security community
question the viability of that risk when matched against mer-
chant risk versus a bank or a government agency. While | would
not want any bank or government agency to use SMS or voice
for MFA, a small business may not have a choice given their solu-
tion. The reason is that the risk of an attack on SMS or voice
is such that only a high value target such as a bank or govern-
ment agency would be worth such an effort. In my very humble
opinion, while a total ban is the easy solution, this is an instance
where the Council should take a more nuanced approach to-
ward the use of SMS and voice for MFA. The bottom line to me
is that small merchants using any MFA solution, even if flawed, is
better than using no MFA solution.

0.3 04
1 1 ]
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00 01
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Figure 2 - The Mean and Standard Deviation Model

The Multivariate Model is similar to the mean and standard
deviation model, but is based on the correlation of multiple
metrics rather than just a single metric. For example, buffer
overflow attacks typically use not only a large input, but the
byte values in the input are often highly repetitive (e.g., as
in the Code Red Worm buffer overflow signature described
above, which contains a long string of ASCII “N” characters
13). Instead of just using the length of an input to a web field,
our hypothetical ISSA quick search anomaly detector might
look at both length and the character distribution of the input
in order to reduce false positives [17].

The Markov Process Model calculates profiles based on the
probabilities of sequences of events, rather than on the sta-
tistics of single events. An example of an anomaly detection
system that uses the Markov process model is the time-based
inductive-learning approach described by Teng, et. al [20].
The system observes the ordering of events and creates prob-

I would recommend the following approach to manage this risk:

e Level 4 merchants can be allowed to use SMS or voice for
MFA.

e |evel 1, 2, and 3 merchants would be allowed to transition
away from SMS and voice to a more secure MFA solution
within one year of NIST stating that they are no longer ac-
ceptable.

e All service providers would not be allowed to use SMS or
voice for MFA once NIST states that both are no longer ac-
ceptable. This means service providers should start transi-
tioning now if they use either.

Those are my thoughts on the subject. | look forward to the

comments | am sure to receive.

About the Author

Jeff Hall, CISSP, CISM, is a Principal Security Con-
sultant in Optiv Security’s Governance, Risk &
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card industry and related security projects. Jeff
has over 30 years of technology and compliance
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ability-based rules. Having observed, for example, this series
of events: A-B-C-S-T-S-T-A-B-C-A-B-C, the system will gen-
erate the following rules:

R1: A -B = (C, 100%) C follows A-B with 100% probability

R2: C > (S, 50%; A, 50%) C is followed by S 50% of the
time and A 50% of the time

R3:S = (T, 100%)
R4: T = (A, 50%; S, 50%)

R2 and R4 have very poor predictive power and will not be-
come part of the profile, but R1 and R3 have good predictive
power. If the system were to ever see the sequence A-B-D, for
example, that would trigger an alert because it violates Rule R1.

Markov models are frequently used in systems where the
statistical difference between normal behavior and attacks
is not large, which could lead to high false-positive or high
false-negative rates. For example, the HMMPayl system uses
a Markov model based on sequences of characters to detect
common attacks against web applications (such as XSS and
SQL-Injection) where statistical measurements, such as input
length or character distribution are insufficiently precise [2].
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The Time Series Model is like the Markov process model but
takes into account both the order of events and the inter-ar-
rival times. An example of an anomaly detection system that
uses the time series model is a system that detects an irreg-
ular heartbeat. In figure 3, the electrocardiogram depicts an
irregular heartbeat. None of the readings in the abnormal flat
region are anomalous by themselves, however, because they
also occur during the course of normal heart rhythm. Only
the order and relative time between the readings make that
region anomalous.

111

Figure 3 - Time series model example detecting an irregular heartbeat

Challenges to anomaly detection

For all of the potential of anomaly detection, there are some
real challenges that must be overcome to build a useful anom-
aly detection system. What is anomalous, for example, is not
necessarily bad. If while training the system has not seen
the complete range of allowed behaviors, or if some allowed
behaviors were rare in the training data, the previously un-
seen—but good—behaviors will likely cause many false posi-
tives. Similarly, what is normal is not necessarily good. What
if, for example, an attacker is already in place? A backdoor
port might “normally” be open and the anomaly detecti on
system would never alert on it, resulting in many false neg-
atives.

Defining normal in complex, chaotic systems is not easy. Data
is noisy and boundaries between normal and anomalous be-
havior may not be precise. In figure 1, for example, why is
anomalous event al, which is very close to the normal range,
outside of it? If a different set of training data was given to
the system, al might very well have been considered part of
the normal profile. A slight change in the trained profile can
have a large effect on the number of false positives and false
negatives.

Normal activity in many systems is highly variable. It may
vary by time of day, day of week, or season. An anomaly
detection system unable to identify cyclical, often complex
patterns will have a large number of false positives or false
negatives at different times for the same training profiles. But
as users, installed programs, hosts, and other factors change
over time, so too will the profile of normal activity. Anomaly
detection systems typically handle change to normal system
behavior over time by continually recalculating profiles, giv-
ing more weight to recent activity (see the sidebar “Weight-
ing”) than to older activity. If, however, behavior is cyclical
then the system might always be chasing normal, constantly
playing catch up, with the profiles always inaccurate. In such
a case, the accuracy of the system might have been better
if the system had simply kept the original profiles constant
(much like a broken clock is correct twice a day).
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Moreover, the accuracy of anomaly detection systems de-
pends heavily on the choice of monitored events. While some
types of events may be strongly correlated with good behav-
iors (or correlated with bad behaviors), others may be com-
pletely independent. If a system is trained on independent
data, the profiles will be irrelevant and potentially result in
many false positives and false negatives. But determining in
advance the usefulness of particular features in the data is
not a simple problem. One solution is to increase the variety
and number of event records that are included in the train-
ing. But simply collecting and examining every possible type
of log record that a system can produce is difficult and time
consuming. It can be difficult to collect, store, search, ana-
lyze, and correlate so many events and to determine which, if
any, provide useful information. The problem of determining
correlations between different varieties of data, moreover, in-
creases exponentially with the number of varieties.

Within the vast quantity of data that must be continually
scanned by an IDS, the number of events that correspond to

SIDEBAR

Weighting

An anomaly detection system must be able to adjust the
profile to compensate for changes over time, a process that
is usually accomplished by weighting recently observed
behavior more heavily than older behavior. For example,
consider an anomaly detection system that counts the
number of occurrences of a certain event Cn for each day n.
The system compares day n's count Cn against the expect-
ed, “normal” value for that day En to see if that day’s count
is anomalous (e.g., using the mean and standard deviation
model described in the article). We can calculate the ex-
pected count for day n, En, as the weighted summation of
previous days:

En=2"%C  +2?xC +2°*C  +...

In words, the expected value for today (day n) is calculat-
ed as one-half of the observed value for yesterday (day n-T7)
plus one quarter of the observed value for two days ago
(day n-2) plus one-eighth of the value for three days ago
(day n-3) plus ... and so on. This gives yesterday’s observed
count the same weight as all of the counts observed on pre-
vious days together. The summation works well for weight-
ing because 1/2 + 1/4 + 1/8 + 1/16 +
- =1, as depicted in figure 4.

Figure 4 — The
summation of 1/2 + 1/4 + 1/8 + 1/16 ...

1/2

Because the expected value for a 1/8
day is calculated using the observed 1/4
counts from all previous days, the ex-
pected value is easy for a computer
to update each day using the simpler formula

En=0.5%(C ,+E )
Coming up with a meaningful and accurate weighting

scheme in complex systems, however, is generally not this
simple.

1/32

"“PTE

1/16

real attacks is typically very small. This means that even a low
false-positive rate can produce a very large number of bogus
alerts. While it may seem more useful for an IDS to identify
as many attacks as possible, a large number of false positives
can have a greater impact on the perceived usefulness of an
IDS to security analysts (see the sidebar “The Problem with
False Positives”). Anomaly detection systems that depend on
statistical models are particularly susceptible to false posi-
tives in this way.

Big data techniques and their application to
intrusion detection

Data is records, statistics, and other objective facts or empiri-
cal observations. Information, on the other hand, is useful in-
terpretations of data. Big data techniques cover the collection,
storage, and analysis of large data sets in order to generate
useful information.

Big data is typically defined in terms of the “3 Vs”[18]:
1. Volume—the sheer scale of data there is to collect
2. Velocity—the rate at which new data can be analyzed
3. Variety—the tremendous diversity of data sources

The ability to store, search, and analyze large amounts of log
data, particularly log data from heterogeneous sources, is es-
sential for reducing false positives and negatives, yet organi-
zations using traditional data management techniques, such
as relational databases, may still struggle to handle the flood
of log data.

A 2013 report from the Cloud Security Alliance, for example,
says that “it is estimated that an enterprise as large as HP cur-
rently (in 2013) generates 1 trillion events per day, or roughly
12 million events per second” [4]. Organizations using tradi-
tional data management techniques, such as relational data-
bases, cannot handle the growing flood of data. New big data
techniques, however, such as Hadoop and Hive permit the
management, search, and analysis of much greater amounts
of log information than previously possible [9]. Hadoop ar-
chitecture is a software framework for storing and processing
large quantities of unstructured, distributed data [15]. Hive is
a structured query infrastructure for making queries on top
of Hadoop [1]. Big data techniques such as these are starting
to be used in intrusion detection [22]. In one case study, Zi-
ons Bank reported that their security systems generated three
terabytes of data per week. Storing and searching the data us-
ing Hadoop and Hive cut the search time for a month of log
data from up to an hour down to a minute [9].

Data mining is a catchall term for the process of collecting,
searching, and analyzing large amounts of data to discover
useful patterns or relationships. It is difficult for humans to
find meaningful associations between disparate data items
in huge data sets from many different sources, so big data
techniques include machine learning—a type of artificial
intelligence where computers can learn without being pro-
grammed. Machine learning can be used in intrusion detec-
tion to automatically find meaningful relationships between

Continued on page 43
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data items. A machine learning system observes collected
data, applies analytical algorithms to determine patterns,
and creates analytical models. Hui Wang, senior director of
global risk and data sciences at PayPal, which uses machine

SIDEBAR

The Problem with False Positives

At first glance, it may seem obvious that the ability of an IDS
to alert on as many intrusions as possible, minimizing the
number of attacks that are missed (false negatives), is more
important than minimizing the number of false alarms (false
positives). But false positives tend to have a greater impact on
the perceived usefulness of an IDS than do false negatives be-
cause false positives are false alarms that waste analysts’ time.
An IDS that has too many false positives will eventually be ig-
nored or simply unplugged.

Let us define the “utility” of an IDS as the probability that an
attack really happened when the IDS alerts. That is, Utility = TP
/(TP + FP), where TP is the number of true positives (alerts due
to a real attack) and FP is the number of false positives (alerts
when there is no attack). Similarly, we will also label the num-
ber of false negatives FN (failures to alert when there is a real
attack) and the number of true negatives TN (lack of alerts,
correctly, when there is no attack). To increase the utility of an
IDS, you must either increase TP or decrease FP. Let us assume
that we have a very accurate IDS with a 99 percent TP rate and
only a one percent FP rate. This means that 99 percent of the
time that an attack happens, the system correctly alerts, and
only one percent of the time that a non-attack event happens,
the system incorrectly alerts. (The corresponding values for
FN and TN rates: FN rate = 1 — TP rate = 1%, TN rate = 1 - FP
rate = 99%.)
Let us further assume that there is a fairly constant attack rate
and that one out of every 10,000 events is malicious (i.e., the
attack density is 1/10000).
We will calculate the utility using Bayes’ rule, where Pr(X|Y) is
the probability of X given Y.

Bayes’ rule: Pr(X]Y) = (Pr(Y|X) = Pr(X))/Pr(Y)
If we designate attacks by the letter A and alerts by the letter
L, the utility—the probability that an attack really happened
when the IDS alerts—is denoted by Pr(A|L).

The probability of an event being an attack—Pr(A)—is
1/10000 = 0.0001. The probability, therefore, that an event is

learning to identify fraud, praises advanced machine learn-
ing, saying it can “see” things that “even human beings might
not be able to see” [8].

not part of an attack—Pr(~A)—is (1 - 0.0001) = 0.9999. We are
assuming that the probability of alerting on a real attack (TP)
is 99 percent, which means Pr(L|A) = 0.99, and the probability
of alerting on a non-attack (FP) is one percent, so Pr(L|-A) =
0.01. The probability of an alert (whether a TP or FP) on any
given event Pr(L), is the probability of alerting on a real attack
times the probability of the event being a real attack plus the
probability of alerting on a non-attack times the probability of
the event not being an attack:

Pr(L) = Pr(L|A)*Pr(A) + Pr(L|-A)*Pr(-A) = (0.99)(0.0001) + (0.01)
(0.9999) = 0.010098

Now we are ready to apply Bayes’ rule to calculate the utility
of the IDS, Pr(A|L):
Pr(L|A) =Pr(A) 0.99 *0.0001

Pr(L) 0010008 00098

Pr(AlL) =

So a 99 percent accurate detector (i.e., both a 99 percent TP
rate and 99 percent TN rate) would have less than one per-
cent utility. Another way of stating that result is that out of 100
alerts, only one alert would reflect a real attack. This is a ma-
jor problem with IDSs: The inability to suppress false positives
can greatly reduce the usefulness of the system.

But which are the most significant factors in the high false-pos-
itive rate and can we easily fix those factors to improve the
utility of the IDS? To find the factors, let us change one param-
eter at a time in our assumed IDS. In order to get the utility of
the system to 50 percent, table 1 shows that we either have to
increase the attack density from 1/10000 to an unrealistically
high 1/100, or else drop the FP rate from 1/100 to an extremely
low 1/10000. To achieve a 99 percent utility, the FP rate has to
drop to the proverbial one in a million.

What these calculations show is that, because intrusions are
typically rare events and non-intrusions are vastly more com-
mon, true positives are generally swamped by false positives.
The rate of attacks is out of our control, so our only hope for
increasing the utility of our IDS is to be able to decrease the
false positive rate of our system. But, as the article explains,
there are many challenges to reducing the false positive rate
in IDSs.

Parameter Set | Attack Density Pr(A) | Probability ofanalertPr(L) | True Positive Pr(L|A) False Positive Pr(L|-A) Utility Pr(A|L)
Original 0.0001 0.010098 0.99 0.01 0.0098
I 0.0001 0.010098999 0.99999 0.01 0.0099
Il 0.01 0.0198 0.99 0.01 0.5
1l 0.0001 0.00019899 0.99 0.0001 0.5
v 0.0001 0.0000999999 0.99 0.000001 0.99
Table 1
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Machine learning systems may engage in what is called “su-
pervised” or “unsupervised” learning. In supervised learn-
ing, humans label data to guide the development of models.
For example, a machine learning system does not know on its
own the difference between legitimate and malicious activity.
The system needs to be given training data containing both
types of activity, and a human must provide feedback to the
system for it to learn the difference. In unsupervised learning,
the system tries on its own to identify data clusters based on
objective criteria. Supervised learning is necessary for subjec-
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tive labels such as “legitimate process” and “malware,” while
unsupervised learning can be used for objective labeling of
data, such as “normal” and “anomalous.” (For a longer dis-
cussion of how machine learning works, see Stephen Jou’s
August 2016 article in the ISSA Journal, “Machine Learning:
A Primer for Security.” [16])

As mentioned earlier, however, the use of machine learning
in intrusion detection is not new. Automatically generated
anomaly detection system profiles are an example of ma-
chine learning. But today’s machine learning systems, built
on infrastructure such as Hadoop and Hive, are capable of
processing vastly greater quantities and varieties of data at
high speed. This, then, is the major promise of big data for
intrusion detection: scale and speed.

Use and limits of big data for misuse detection

Development of misuse detection signatures has typically
been a “manual” process, where expert human knowledge
is converted into an analytical model. Expert system rule
models of this type are static and don’t automatically adapt
over time. Malware writers know this and construct defens-
es within malware against intrusion detection to prevent the
malware from matching a signature. Polymorphic malware
is an example defense against detection by an IDS. Polymor-
phic malware mutates, so the code won’t match an existing
signature but preserves the original algorithm. There are an
almost infinite number of ways that malware can mutate. The
code itself can be reordered, or it can be encrypted using dif-
ferent keys, or its purpose can be obfuscated, and it is impos-
sible for signature databases to encompass all of the possible
signatures, even if signature writers could keep up.

But now some commercial IDSs are using machine learning
to automatically generate more general, abstract signatures
for known attacks (Endgame is one vendor that claims to
offer an IDS of this type [12]). By looking at common fea-
tures, the vendors claim, misuse detection systems will avoid
being fooled by polymorphic variations of the malware and
can even detect new malware that uses the same attack tech-
niques as known malware, sharply reducing false negatives.

On the other hand, while machine learning-generated signa-
tures are signatures on steroids, they can nevertheless only be
used to detect previously identified “bad” behavior. Misuse
detection systems that use machine learning-generated sig-
natures will still not be able to identify truly new attacks that
do not share characteristics with older malware for which sig-
natures already exist. This means that attackers will continue
to be able to find ways to prevent detection of malware and
that machine learning-generated signatures, although a ma-
jor improvement over human-generated signatures, may be
just one more step in the continuing arms race between cyber
attackers and defenders.

Use and limits of big data for specification-based detection

As mentioned above, specifications are created a priori from
theoretical reasoning about legitimate behavior, rather than
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by empirical observation of behavior. Because big data tech-
niques are aimed at extracting information from empirical
observation, specification-based intrusion detection will
likely benefit the least of the three intrusion detection meth-
ods from big data techniques.

Yet, big data techniques can be used to help guide the cre-
ation of specifications. Specification developers can create
rough specifications and compare them against a large stored
database of empirical observations of system behavior. The
results of that comparison can be used to refine the specifica-
tions. But using empirical data to help guide the creation of
specifications is not itself new; the chief contribution of big
data in this case would be increased scale and speed of the
comparison.

Use and limits of big data for anomaly detection

Anomaly detection training is a process of collecting, search-
ing, and analyzing data to determine patterns or relation-
ships in the data (i.e., profiles) that indicate normal behavior
and that may be associated with legitimate activity. Big data
techniques permit the collection, searching, and analysis of
much greater quantities of event data than was possible be-
fore, providing a foundation for advanced analysis. Big data
thus seems tailor-made for improving anomaly detection.

The ability to handle greater quantities and types of log data
could help increase the accuracy of profiles by observing
larger sets of training data and thereby reducing the effect
of noise in the data, but even big data techniques are not a
complete panacea. Increasing data volume, velocity, and vari-
ety can overwhelm the ability of even a big data-enabled sys-
tem to analyze the data. Advances in processing data must be
matched by advances in feature selection in order to improve
the accuracy of profiles and to reduce the data overload. Ma-
chine learning can help with this by identifying useful fea-
tures and eliminating irrelevant and redundant features from
training [14]. Machine learning can also be applied to pro-
file even highly variable activity that varies over time. And
advanced correlation algorithms could help find subtle and
complex relationships in heterogeneous data that were not
findable using older techniques [22].

Yet, other fundamental problems of anomaly detection still
apply, even if an IDS is big data-enabled. Just because we can
collect and analyze more data, it doesn’t necessarily follow

that the extra data contains any more useful information.
And what is anomalous, as mentioned earlier, is not neces-
sarily bad and what is normal is not necessarily good. The
scale and speed of big data could, in the worst case, increase,
rather than decrease, the number of false positives and false
negatives.

Conclusion

The set of techniques collectively referred to as big data offers
the promise of collecting, storing, processing, and analyzing
data at unprecedented scale and speed. It is hoped that the
application of big data to the problem of intrusion detection
will greatly improve results by reducing false-positive and
false-negative alert rates.

But the belief that there are much more accurate anomaly de-
tection profiles to be created, for example, if only we could
examine data in the right way, is still unsupported. Com-
plex, chaotic systems with fuzzy boundaries between normal
and anomalous may remain resistant to analysis no matter
how many data mining and machine learning algorithms we
bring to bear on the problem. And improved signatures cre-
ated using big data techniques and used in misuse detection
systems are still just signatures, leaving systems just as unable
to detect new attacks as they were before. It could also turn
out that, even if big data techniques can improve intrusion
detection, the overall improvement is slight. We are still early
in the application of big data to intrusion detection and there
is much potential, but fundamental limits in intrusion detec-
tion mean that big data cannot be a magic bullet.
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